Physics of Tsunamis


Book Description

Till the very end of the twentieth century tsunami waves (or ‘waves in a harbour’, translated from Japanese) were considered an extremely rare and exotic natural p- nomenon, originating in the ocean and unexpectedly falling upon the seaside as gigantic waves. The 26th of December 2004, when tsunami waves wiped out, in a single day, more than 250,000 human lives, mourned in many countries, turned out to be a tragic date for all mankind. The authors of this book, who have studied tsunami waves for many years, - tended it to be a systematic exposition of modern ideas concerning • The mechanisms of tsunami wave generation • The peculiarities of tsunami wave propagation in the open ocean and of how waves run-up beaches • Methods for tsunami wave registration and the operation of a tsunami warning system • The mechanisms of other catastrophic processes in the ocean related to the se- mic activity of our planet The authors considered their main goal to be the creation of book prese- ing modern knowledge of tsunami waves and of other catastrophes in the ocean to scienti?c researchers and specialists in geophysics, oceanography, seismology, hydroacoustics, geology, geomorphology, civil and seaside engineering, postgr- uate students and students of relevant professions.




Physics of Tsunamis


Book Description

This second edition reflects significant progress in tsunami research, monitoring and mitigation within the last decade. Primarily meant to summarize the state-of-the-art knowledge on physics of tsunamis, it describes up-to-date models of tsunamis generated by a submarine earthquake, landslide, volcanic eruption, meteorite impact, and moving atmospheric pressure inhomogeneities. Models of tsunami propagation and run-up are also discussed. The book investigates methods of tsunami monitoring including coastal mareographs, deep-water pressure gauges, GPS buoys, satellite altimetry, the study of ionospheric disturbances caused by tsunamis and the study of paleotsunamis. Non-linear phenomena in tsunami source and manifestations of water compressibility are discussed in the context of their contribution to the wave amplitude and energy. The practical method of calculating the initial elevation on a water surface at a seismotectonic tsunami source is expounded. Potential and eddy traces of a tsunamigenic earthquake in the ocean are examined in terms of their applicability to tsunami warning. The first edition of this book was published in 2009. Since then, a few catastrophic events occurred, including the 2011 Tohoku tsunami, which is well known all over the world. The book is intended for researchers, students and specialists in oceanography, geophysics, seismology, hydro-acoustics, geology, and geomorphology, including the engineering and insurance industries.




Tsunamis


Book Description

The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most destructive tsunami in over 400 years of recorded history. The tsunamis that occurred as a result of the earthquake in Japan in March 2011 further emphasized the need for detection, monitoring, and early-warning technologies. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis. - Offers readers the only source of practical content on the technological details of the subject - Written by a tsunami detection and monitoring expert who has 32 years of experience in the field - Companion web site featuring multi-media components, timely updates on fast-paced technological developments, and an online forum where scientists can exchange ideas, discuss technological updates and provide the author with valuable feedback




Submarine Landslides and Tsunamis


Book Description

Tsunamis are water waves triggered by impulsive geologic events such as sea floor deformation, landslides, slumps, subsidence, volcanic eruptions and bolide impacts. Tsunamis can inflict significant damage and casualties both nearfield and after evolving over long propagation distances and impacting distant coastlines. Tsunamis can also effect geomorphologic changes along the coast. Understanding tsunami generation and evolution is of paramount importance for protecting coastal population at risk, coastal structures and the natural environment. Accurately and reliably predicting the initial waveform and the associated coastal effects of tsunamis remains one of the most vexing problems in geophysics, and -with few exceptions- has resisted routine numerical computation or data collection solutions. While ten years ago, it was believed that the generation problem was adequately understood for useful predictions, it is now clear that it is not, especially nearfield. By contrast, the runup problem earlier believed intractable is now well understood for all but the most extreme breaking wave events.




Tsunamiites - Features and Implications


Book Description

This book is an overview of the state-of-the art developments in sedimentology of tsunami-induced and tsunami-affected deposits, namely tsunamiites. It also highlights new problems and issues calling for additional investigation, and provides insight into the direction for future tsunamiite researches. Provides a comprehensive overview of developments in tsunamiites Investigates future trends and development needs Cutting edge research articles from leading experts aimed at researchers and scientists




Tsunami Generation and Propagation


Book Description

This book introduces a framework of tsunami modelling from generation to propagation, aimed at application to the new observation started in Japan after the devastating tsunami of the 2011 Tohoku-Oki earthquake. About 150 seismic and tsunami sensors were deployed in a wide region off the Pacific coast of eastern Japan in order to catch tsunami generation inside the focal area, which makes a clear departure from conventional observations that detect tsunamis far from the source region. In order to exploit the full potential of this new observation system, it is not enough to model tsunami generation simply by static sea-bottom deformation caused by an earthquake. This book explains dynamic tsunami generation and sea-bottom deformation by kinematic earthquake faulting, in which seismic and acoustic waves are also included in addition to static sea-bottom deformation. It then systematically derives basic tsunami equations from the fundamental equations of motions. The author also illustrates the details of numerical schemes and their applications to tsunami records, making sound linkages among these topics to naturally understand how a tsunami is physically or mathematically described. This book will be a comprehensive guide for graduate students and young researchers to start their research activities smoothly.




Extreme Man-Made and Natural Hazards in Dynamics of Structures


Book Description

This book provides a critical assessment of current knowledge and indicates new challenges which are brought about at present times by fighting man-made and natural hazards in transient analysis of structures. The latter concerns both permanently fixed structures, such as those built to protect people and/or sensitive storage material; or special structures, like bridges and tunnels; and moving structures such as trains, planes, ships or cars.




Living on an Active Earth


Book Description

The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.




Matter


Book Description

Matter: Physical Science for Kids from the Picture Book Science series gets kids excited about science! What’s the matter? Everything is matter! Everything you can touch and hold is made up of matter—including you, your dog, and this book! Matter is stuff that you can weigh and that takes up space, which means pretty much everything in the world is made of matter. In Matter: Physical Science for Kids, kids ages 5 to 8 explore the definition of matter and the different states of matter, plus the stuff in our world that isn’t matter, such as sound and light! In this nonfiction picture book, children are introduced to physical science through detailed illustrations paired with a compelling narrative that uses fun language to convey familiar examples of real-world science connections. By recognizing the basic physics concept of matter and identifying the different ways matter appears in real life, kids develop a fundamental understanding of physical science and are impressed with the idea that science is a constant part of our lives and not limited to classrooms and laboratories. Simple vocabulary, detailed illustrations, easy science experiments, and a glossary all support exciting learning for kids ages 5 to 8. Perfect for beginner readers or as a read aloud nonfiction picture book! Part of a set of four books in a series called Picture Book Science that tackles different kinds of physical science (waves, forces, energy, and matter), Matter offers beautiful pictures and simple observations and explanations. Quick STEM activities such as weighing two balloons to test if air is matter help readers cross the bridge from conceptual to experiential learning and provide a foundation of knowledge that will prove invaluable as kids progress in their science education. Perfect for children who love to ask, “Why?” about the world around them, Matter satisfies curiosity while encouraging continual student-led learning.




Tsunamis


Book Description

Underwater earthquakes, volcanoes, and mudslides can cause tsunami waves that reach land and wreak havoc. Children will learn how tsunamis develop, how they are detected, and their devastating impact on communities.