Rhizobiology: Molecular Physiology of Plant Roots


Book Description

This book discusses the recent advancements in the role of various biomolecules in regulating root growth and development. Rhizobiology is a dynamic sub discipline of plant science which collates investigations from various aspects like physiology, biochemistry, genetic analysis and plant–microbe interactions. The physiology and molecular mechanisms of root development have undergone significant advancements in the last couple of decades. Apart from the already known conventional phytohormones (IAA, GA, cytokinin, ethylene and ABA), certain novel biomolecules have been considered as potential growth regulators or hormones regulating plant growth and development. Root phenotyping and plasticity analysis with respect to the specific functional mutants of each biomolecule shall provide substantial information on the molecular pathways of root signaling. Special emphasis provides insights on the tolerance and modulatory mechanisms of root physiology in response to light burst, ROS generation, agravitrophic response, abiotic stress and biotic interactions. Root Apex Cognition: From Neuronal Molecules to Root-Fungal Networks and Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. Chapters “Root Apex Cognition: From Neuronal Molecules to Root-Fungal Networks and Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Root Physiology: from Gene to Function


Book Description

In the last decade, enormous progress has been made on the physiology of plant roots, including on a wide range of molecular aspects. Much of that progress has been captured in the chapters of this book. Breakthroughs have been made possible through integration of molecular and whole-plant aspects. The classical boundaries between physiology, biochemistry and molecular biology have vanished. There has been a strong focus on a limited number of model species, including Arabidopsis thaliana. That focus has allowed greater insight into the significance of specific genes for plant development and functioning. However, many species are very different from A. thaliana, in that they are mycorrhizal, develop a symbiosis with N2-fixing microsymbionts, or have other specialised root structures. Also, some have a much greater capacity to resist extreme environments, such as soil acidity, salinity, flooding or heavy-metal toxicities, due to specific adaptations. Research on species other than A. thaliana is therefore pivotal, to develop new knowledge in plant sciences in a comprehensive manner. This fundamental new knowledge can be the basis for important applications in, e.g., agriculture and plant conservation. Although significant progress has been made, much remains to be learnt. It is envisaged that discoveries made in the recent past will likely lead to major breakthroughs in the next decade.




Vegetable Grafting


Book Description

This book provides comprehensive and current scientific and practical knowledge on vegetable grafting, a method gaining considerable interest as an alternative to the use of fumigants to protect crops from soil-borne diseases.




Rhizobiology: Molecular Physiology of Plant Roots


Book Description

This book discusses the recent advancements in the role of various biomolecules in regulating root growth and development. Rhizobiology is a dynamic sub discipline of plant science which collates investigations from various aspects like physiology, biochemistry, genetic analysis and plant-microbe interactions. The physiology and molecular mechanisms of root development have undergone significant advancements in the last couple of decades. Apart from the already known conventional phytohormones (IAA, GA, cytokinin, ethylene and ABA), certain novel biomolecules have been considered as potential growth regulators or hormones regulating plant growth and development. Root phenotyping and plasticity analysis with respect to the specific functional mutants of each biomolecule shall provide substantial information on the molecular pathways of root signaling. Special emphasis provides insights on the tolerance and modulatory mechanisms of root physiology in response to light burst, ROS generation, agravitrophic response, abiotic stress and biotic interactions. Root Apex Cognition: From Neuronal Molecules to Root-Fungal Networks and Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Salinity and Drought Stress in Plants: Understanding Physiological, Biochemical and Molecular Responses


Book Description

Drought and salinity are two of the foremost environmental factors which restrict plant growth and yield in several regions of the world, especially in arid and semi‐arid regions. Due to global climate change, drought and salinity are predicted to become more widespread and eventually result in reduced plant growth and productivity in numerous plant species. Exposure of plants to extreme drought or salt stress ceases plant growth, while plants exposed to moderate stress generally show a slight change in their growth performance. Scientists are facing the challenging task of producing 70% more food to feed an additional 2.3 billion people by 2050. Therefore, it is imperative to develop stress-resilient crops with better yield under drought and salt stress to meet the food requirements of upcoming generations.




Abiotic Stress Alleviation in Plants: Morpho-Physiological and Molecular Aspects


Book Description

Plants are constantly exposed to changing environmental conditions. Abiotic stresses cause adverse effects on plant growth, development, survival, and yield. It is essential to improve plant responses to such environmental conditions to achieve sustainable crop growth, development, and productivity. The activation of plant stress signaling mechanisms is crucial to address the adverse impacts of environmental factors on plant growth and productivity. Phytoprotectants, including signaling molecules, play crucial roles in the activation of plant physiological and molecular mechanisms to withstand the negative effects of abiotic stress on plants. Investigation of physiological, biochemical, and metabolic pathways associated with plant adaptation to abiotic stress will help identify the key players involved in plant abiotic stress tolerance mechanisms. The sensing, signaling, and gene regulatory mechanisms that help plants cope with abiotic stress must be fully explored.




The Almond Tree Genome


Book Description

This book brings together the latest information on almond genomics and transcriptomics, with a particular focus on cutting-edge findings, tools, and strategies employed in genome sequencing and analysis with regard to the most important agronomic traits. Cultivated almond [(Prunus dulcis (Miller) D. A. Webb, syn. Prunus amygdalus Batsch., Amygdalus communis L., Amygdalus dulcis Mill.)] is a tree crop producing seeds of great economic interest, and adapted to hot and dry climates. Domesticated in Southeast Asia, its small diploid genome and phenotypic diversity make it an ideal model to complement genomics studies on peach, generally considered to be the reference Prunus species. Both represent consanguineous species that evolved in two distinct environments: warmer and more humid in the case of peach, and colder and xerophytic for almond. The advent of affordable whole-genome sequencing, in combination with existing Prunus functional genomics data, has now made it possible to leverage the novel diversity found in almond, providing an unmatched resource for the genetic improvement of this species.