Physiological Strategies for Gas Exchange and Metabolism


Book Description

This 1991 book reviews the various metabolic and functional mechanisms that animals possess in order to live successfully in their own particular, often unique, environments. It demonstrates both the diversity of responses that are shown and the underlying principles of gas exchange and transport for a wide range of organisms.




Pulmonary Gas Exchange


Book Description

The lung receives the entire cardiac output from the right heart and must load oxygen onto and unload carbon dioxide from perfusing blood in the correct amounts to meet the metabolic needs of the body. It does so through the process of passive diffusion. Effective diffusion is accomplished by intricate parallel structures of airways and blood vessels designed to bring ventilation and perfusion together in an appropriate ratio in the same place and at the same time. Gas exchange is determined by the ventilation-perfusion ratio in each of the gas exchange units of the lung. In the normal lung ventilation and perfusion are well matched, and the ventilation-perfusion ratio is remarkably uniform among lung units, such that the partial pressure of oxygen in the blood leaving the pulmonary capillaries is less than 10 Torr lower than that in the alveolar space. In disease, the disruption to ventilation-perfusion matching and to diffusional transport may result in inefficient gas exchange and arterial hypoxemia. This volume covers the basics of pulmonary gas exchange, providing a central understanding of the processes involved, the interactions between the components upon which gas exchange depends, and basic equations of the process.




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




Comprehensive Human Physiology


Book Description

Comprehensive Human Physiology is a significantly important publication on physiology, presenting state-of-the-art knowledge about both the molecular mechanisms and the integrative regulation of body functions. This is the first time that such a broad range of perspectives on physiology have been combined to provide a unified overview of the field. This groundbreaking two-volume set reveals human physiology to be a highly dynamic science rooted in the ever-continuing process of learning more about life. Each chapter contains a wealth of original data, clear illustrations, and extensive references, making this a valuable and easy-to-use reference. This is the quintessential reference work in the fields of physiology and pathophysiology, essential reading for researchers, lecturers and advanced students.




Anatomy and Physiology


Book Description




Entomology


Book Description

Gillott’s thorough yet clear writing style continues to keep Entomology near the top of the class as a text for senior undergraduates, and for graduate students and professionals seeking an introduction to specific entomological topics. The author’s long-held belief that an introductory entomology course should present a balanced treatment of the subject is reflected in the continued arrangement of the book in four sections: Evolution and Diversity, Anatomy and Physiology, Reproduction and Development, and Ecology. For the third edition, all chapters have been updated. This includes not only the addition of new information and concepts but also the reduction or exclusion of material no longer considered "mainstream", so as to keep the book at a reasonable size. Based on exciting discoveries made during the previous decade, the topics of insect evolutionary relationships, semiochemicals, gas exchange, immune responses (including those of parasites and parasitoids), flight, and the management of pests have received particular attention in the preparation of the third edition. Overall, more than 30 new or significantly revised figures have been incorporated.




Regulation of Coronary Blood Flow


Book Description

Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.




The Oxford Handbook of Evolutionary Medicine


Book Description

Medicine is grounded in the natural sciences, where biology stands out with regard to our understanding of human physiology and the conditions that cause dysfunction. Ironically though, evolutionary biology is a relatively disregarded field. One reason for this omission is that evolution is deemed a slow process. Indeed, the macroanatomical features of our species have changed very little in the last 300,000 years. A more detailed look, however, reveals that novel ecological contingencies, partly in relation to cultural evolution, have brought about subtle changes pertaining to metabolism and immunology, including adaptations to dietary innovations, as well as adaptations to the exposure to novel pathogens. Rapid pathogen evolution and evolution of cancer cells cause major problems for the immune system. Moreover, many adaptations to past ecologies have actually turned into risk factors for somatic disease and psychological disorder in our modern worlds (i.e. mismatch), among which epidemics of autoimmune diseases, cardiovascular diseases, diabetes and obesity, as well as several forms of cancer stand out. One could add depression, anxiety, and other psychiatric conditions to the list. The Oxford Handbook of Evolutionary Medicine is a compilation of up-to-date insights into the evolutionary history of ourselves as a species, exploring how and why our evolved design may convey vulnerability to disease. Written in a classic textbook style emphasising physiology and pathophysiology of all major organ systems, the Oxford Handbook of Evolutionary Medicine is valuable reading for students as well as scholars in the fields of medicine, biology, anthropology and psychology.




Handbook of Blood Gas/Acid-Base Interpretation


Book Description

Handbook of Blood Gas/Acid-Base Interpretation, 2nd edition, simplifies concepts in blood gas/acid base interpretation and explains in an algorithmic fashion the physiological processes for managing respiratory and metabolic disorders. With this handbook, medical students, residents, nurses, and practitioners of respiratory and intensive care will find it possible to quickly grasp the principles underlying respiratory and acid-base physiology, and apply them. Uniquely set out in the form of flow-diagrams/algorithms charts, this handbook introduces concepts in a logically organized sequence and gradually builds upon them. The treatment of the subject in this format, describing processes in logical steps makes it easy for the reader to cover a difficult- and sometimes dreaded- subject rapidly.




Basic Physiology for Anaesthetists


Book Description

Easily understood, up-to-date and clinically relevant, this book provides junior anaesthetists with an essential physiology resource.