PI-Algebras


Book Description




Free Algebras and PI-algebras


Book Description

The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.




Ideals of Identities of Associative Algebras


Book Description

This book concerns the study of the structure of identities of PI-algebras over a field of characteristic zero. In the first chapter, the author brings out the connection between varieties of algebras and finitely-generated superalgebras. The second chapter examines graded identities of finitely-generated PI-superalgebras. One of the results proved concerns the decomposition of T-ideals, which is very useful for the study of specific varieties. In the fifth section of Chapter Two, the author solves Specht's problem, which asks whether every associative algebra over a field of characteristic zero has a finite basis of identities. The book closes with an application of methods and results established earlier: the author finds asymptotic bases of identities of algebras with unity satisfying all of the identities of the full algebra of matrices of order two.




Identities of Algebras and their Representations


Book Description

During the past forty years, a new trend in the theory of associative algebras, Lie algebras, and their representations has formed under the influence of mathematical logic and universal algebra, namely, the theory of varieties and identities of associative algebras, Lie algebras, and their representations. The last twenty years have seen the creation of the method of 2-words and *a-functions, which allowed a number of problems in the theory of groups, rings, Lie algebras, and their representations to be solved in a unified way. The possibilities of this method are far from exhausted. This book sums up the applications of the method of 2-words and *a-functions in the theory of varieties and gives a systematic exposition of contemporary achievements in the theory of identities of algebras and their representations closely related to this method. The aim is to make these topics accessible to a wider group of mathematicians.




Polynomial Identities in Algebras


Book Description

This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.




Polynomial Identities in Ring Theory


Book Description

Polynomial Identities in Ring Theory




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




A Taste of Jordan Algebras


Book Description

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.




Graduate Algebra: Noncommutative View


Book Description

This book is an expanded text for a graduate course in commutative algebra, focusing on the algebraic underpinnings of algebraic geometry and of number theory. Accordingly, the theory of affine algebras is featured, treated both directly and via the theory of Noetherian and Artinian modules, and the theory of graded algebras is included to provide the foundation for projective varieties. Major topics include the theory of modules over a principal ideal domain, and its applications to matrix theory (including the Jordan decomposition), the Galois theory of field extensions, transcendence degree, the prime spectrum of an algebra, localization, and the classical theory of Noetherian and Artinian rings. Later chapters include some algebraic theory of elliptic curves (featuring the Mordell-Weil theorem) and valuation theory, including local fields. One feature of the book is an extension of the text through a series of appendices. This permits the inclusion of more advanced material, such as transcendental field extensions, the discriminant and resultant, the theory of Dedekind domains, and basic theorems of rings of algebraic integers. An extended appendix on derivations includes the Jacobian conjecture and Makar-Limanov's theory of locally nilpotent derivations. Gröbner bases can be found in another appendix. Exercises provide a further extension of the text. The book can be used both as a textbook and as a reference source.




Polynomial Identity Rings


Book Description

These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.