Hybrid Renewable Energy Systems and Microgrids


Book Description

Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems







Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid


Book Description

This book focuses on various challenges, solutions, and emerging technologies in the operation, control, design, optimization, and protection of microgrids in the presence of hybrid renewable energy sources and electric vehicles. This book provides an insight into the potential applications and recent development of different types of renewable energy systems including AC/DC microgrids, RES integration issues with the grid, electric vehicle technology, etc. The book serves as an interdisciplinary platform for the audience working in the focused area to access information related to energy management, modeling, and control. It covers fundamental knowledge, design, mathematical modeling, applications, and practical issues with sufficient design problems and case studies with detailed planning aspects. This book will serve as a guide for researchers, academicians, practicing engineers, professionals, and scientists, as well as for graduate and postgraduate students working in the area of various applications of RES, Electric Vehicles, and AC/DC Microgrid.




Standalone Renewable Energy Systems


Book Description

Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid. These systems may include photovoltaic generators, wind turbines, hydro turbines or any other renewable electrical generator. Usually, this kind of system includes electricity storage (commonly lead-acid batteries, but also other types of storage can be used). In some cases, a backup generator (usually powered by fossil fuel, diesel or gasoline) is part of the hybrid system. The modelling of the components, the control of the system and the simulation of the performance of the whole system are necessary to evaluate the system technically and economically. The optimization of the sizing and/or the control is also an important task in this kind of system.




Hybrid Renewable Energy Systems


Book Description

The energy scene in the world is a complex picture of a variety of energy sources being used to meet the world's growing energy needs. There is, however, a gap in the demand and supply. It is recognized that decentralized power generation based on the various renewable energy technologies can, to some extent, help in meeting the growing energy needs. The renewable energy landscape has witnessed tremendous changes in the policy framework with accelerated and ambitious plans to increase the contribution of renewable energy such as solar, wind, bio-power, and others. Hybrid renewable energy systems are important for continuous operation and supplements each form of energy seasonally, offering several benefits over a stand-alone system. It can enhance capacity and lead to greater security of continuous electricity supply, among other applications. This book provides a platform for researchers, academics, industry professionals, consultants and designers to discover state-of-the-art developments and challenges in the field of hybrid renewable energy. Written by a team of experts and edited by one of the top researchers in hybrid renewable systems, this volume is a must-have for any engineer, scientist, or student working in this field, providing a valuable reference and guide in a quickly emerging field.




Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs


Book Description

This book discusses the design and scheduling of residential, industrial, and commercial energy hubs, and their integration into energy storage technologies and renewable energy sources. Each chapter provides theoretical background and application examples for specific power systems including, solar, wind, geothermal, air and hydro. Case-studies are included to provide engineers, researchers, and students with the most modern technical and intelligent approaches to solving power and energy integration problems with special attention given to the environmental and economic aspects of energy storage systems.




Sustainable Energy Systems Planning, Integration and Management


Book Description

Energy systems worldwide are undergoing major transformation as a consequence of the transition towards the widespread use of clean and sustainable energy sources. Basically, this involves massive changes in technical and organizational levels together with tremendous technological upgrades in different sectors ranging from energy generation and transmission systems down to distribution systems. These actions generate huge science and engineering challenges and demands for expert knowledge in the field to create solutions for a sustainable energy system that is economically, environmentally, and socially viable while meeting high security requirements. This book covers these promising and dynamic areas of research and development, and presents contributions in sustainable energy systems planning, integration, and management. Moreover, the book elaborates on a variety of topics, ranging from design and planning of small- to large-scale energy systems to the operation and control of energy networks in different sectors, namely electricity, heat, ‎and transport.




Microsoft Excel-Based Tool Kit for Planning Hybrid Energy Systems


Book Description

The Asian Development Bank has implemented a regional technical assistance to develop small hybrid renewable energy systems that will provide reliable, adequate, and affordable energy for inclusive growth in Asian rural areas, and enable access to electricity and energy efficiency in remote rural locations and small isolated islands. This guide was prepared as part of knowledge development activities of the technical assistance, and is intended to support planning hybrid renewable energy systems based on experiences of pilot projects in South Asian developing member countries. It will help find the most cost-effective configuration for a hybrid renewable energy stand-alone system through simulation of operation for each possible configuration of the system.




Deployment of Hybrid Renewable Energy Systems in Minigrids


Book Description

Despite significant economic growth in Asia in recent decades, millions of people in rural Asia still lack access to electricity. In response, the Asian Development Bank is working to foster universal access to energy by developing small hybrid renewable energy systems in rural Asian areas. This publication highlights the experiences of ADB's pilot projects to achieve access to electricity and energy efficiency in five developing countries in Asia. It provides technical guidance and recommendations for the effective deployment of similar systems in minigrids in remote rural locations and small isolated islands.