Planning and Operation of Plug-In Electric Vehicles


Book Description

This book highlights the latest advancements in the planning and operation of plug-in electric vehicles (PEV). In-depth, the book presents essential planning and operation techniques to manage the PEV fleet and handle the related uncertainties associated with the drivers’ behavior. Several viewpoints are presented in the book, ranging from the local distribution companies to generation companies to the aggregators. Problems such as parking lot allocation and charging management are investigated, taking into consideration the technical, geographical, and social aspects in a smart grid infrastructure. Discusses the technical specifications of electrical distribution and generation systems; Models drivers’ behavior from the sociology and economic points of view; Considers the real geographical characteristics of area and driving routes in San Francisco, CA, US; Chicago, IL, US; and Tehran, Iran.




Planning and Operation of Plug-In Electric Vehicles


Book Description

This book highlights the latest advancements in the planning and operation of plug-in electric vehicles (PEV). In-depth, the book presents essential planning and operation techniques to manage the PEV fleet and handle the related uncertainties associated with the drivers’ behavior. Several viewpoints are presented in the book, ranging from the local distribution companies to generation companies to the aggregators. Problems such as parking lot allocation and charging management are investigated, taking into consideration the technical, geographical, and social aspects in a smart grid infrastructure. Discusses the technical specifications of electrical distribution and generation systems; Models drivers’ behavior from the sociology and economic points of view; Considers the real geographical characteristics of area and driving routes in San Francisco, CA, US; Chicago, IL, US; and Tehran, Iran.




Plug-In Electric Vehicles


Book Description

Plug-in electric vehicles are coming. Major automakers plan to commercialize their first models soon, while Israel and Denmark have ambitious plans to electrify large portions of their vehicle fleets. No technology has greater potential to end the United States' crippling dependence on oil, which leaves the nation vulnerable to price shocks, supply disruptions, environmental degradation, and national security threats including terrorism. What does the future hold for this critical technology, and what should the U.S. government do to promote it? Hybrid vehicles now number more than one million on America's roads, and they are in high demand from consumers. The next major technological step is the plug-in electric vehicle. It combines an internal combustion engine and electric motor, just as hybrids do. But unlike their precursors, PEVs can be recharged from standard electric outlets, meaning the vehicles would no longer be dependent on oil. Widespread growth in the use of PEVs would dramatically reduce oil dependence, cut driving costs and reduce pollution from vehicles. National security would be enhanced, as reduced oil dependence decreases the leverage and resources of petroleum exporters. Brookings fellow David Sandalow heads up an authoritative team of experts including former government officials, private-sector analysts, academic experts, and nongovernmental advocates. Together they explain the current landscape for PEVs: the technology, the economics, and the implications for national security and the environment. They examine how the national interest could be served by federal promotion and investment in PEVs. For example, can tax or procurement policy advance the cause of PEVs? Should the public sector contribute to greater research and development? Should the government insist on PEVs to replenish its huge fleet of official vehicles? Plug-in electric vehicles are coming. But how soon, in what numbers, and to what effect? Feder




Applications of Fuzzy Logic in Planning and Operation of Smart Grids


Book Description

Fuzzy logic has vast applications in power and electrical engineering. This collection is the first book to cover research advancements in the application of fuzzy logic in the planning and operation of smart grids. A global group of researchers and scholars present innovative approaches to fuzzy-based smart grid planning and operation, cover theoretical concepts and experimental results of the application of fuzzy-based techniques, and define and apply these techniques to deal with smart grid issues. Applications of Fuzzy Logic in Planning and Operation of Smart Grids is an ideal resource for researchers on the theory and application of fuzzy logic, practicing engineers working in electrical power engineering and power system planning, and post-graduates and students in advanced graduate-level courses.







Smart Power Grids 2011


Book Description

Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.




Grid Optimal Integration of Electric Vehicles: Examples with Matlab Implementation


Book Description

This book is a compilation of recent research on distributed optimization algorithms for the integral load management of plug-in electric vehicle (PEV) fleets and their potential services to the electricity system. It also includes detailed developed Matlab scripts. These algorithms can be implemented and extended to diverse applications where energy management is required (smart buildings, railways systems, task sharing in micro-grids, etc.). The proposed methodologies optimally manage PEV fleets’ charge and discharge schedules by applying classical optimization, game theory, and evolutionary game theory techniques. Taking owner’s requirements into consideration, these approaches provide services like load shifting, load balancing among phases of the system, reactive power supply, and task sharing among PEVs. The book is intended for use in graduate optimization and energy management courses, and readers are encouraged to test and adapt the scripts to their specific applications.




Transitions to Alternative Transportation Technologies


Book Description

Hydrogen fuel cell vehicles (HFCVs) could alleviate the nation's dependence on oil and reduce U.S. emissions of carbon dioxide, the major greenhouse gas. Industry-and government-sponsored research programs have made very impressive technical progress over the past several years, and several companies are currently introducing pre-commercial vehicles and hydrogen fueling stations in limited markets. However, to achieve wide hydrogen vehicle penetration, further technological advances are required for commercial viability, and vehicle manufacturer and hydrogen supplier activities must be coordinated. In particular, costs must be reduced, new automotive manufacturing technologies commercialized, and adequate supplies of hydrogen produced and made available to motorists. These efforts will require considerable resources, especially federal and private sector funding. This book estimates the resources that will be needed to bring HFCVs to the point of competitive self-sustainability in the marketplace. It also estimates the impact on oil consumption and carbon dioxide emissions as HFCVs become a large fraction of the light-duty vehicle fleet.




Planning and Operation of Active Distribution Networks


Book Description

This book offers a broad and detailed view about how traditional distribution systems are evolving smart/active systems. The reader will be able to share the view of a number of researchers directly involved in this field. For this sake, philosophical discussions are enriched by the presentation of theoretical and computational tools. A senior reader may incorporate some concepts not available during his/her graduation process, whereas new Engineers may have contact with some material that may be essential to his/her practice as professionals.




Plug-in Electric Vehicle Grid Integration


Book Description

This authoritative new resource provides a comprehensive introduction to plug-in electric vehicles (PEVs), including critical discussions on energy storage and converter technology. The architecture and models for sustainable charging infrastructures and capacity planning of small scale fast charging stations are presented. This book considers PEVs as mobile storage units and explains how PEVS can provide services to the grid. Enabling technologies are explored, including energy storage, converter, and charger technologies for home and park charging. The adoption of EV is discussed and examples are given from the individual battery level to the city level. This book provides guidance on how to build and design sustainable transportation systems. Optimal arrival rates, optimal service rates, facility location problems, load balancing, and demand forecasts are covered in this book. Time-saving MATLAB code and background tables are included in this resource to help engineers with their projects in the field.