Plant Allometry


Book Description

Allometry, the study of the growth rate of an organism's parts in relation to the whole, has produced exciting results in research on animals. Now distinguished plant biologist Karl J. Niklas has written the first book to apply allometry to studies of the evolution, morphology, physiology, and reproduction of plants. Niklas covers a broad spectrum of plant life, from unicellular algae to towering trees, including fossil as well as extant taxa. He examines the relation between organic size and variations in plant form, metabolism, reproduction, and evolution, and draws on the zoological literature to develop allometric techniques for the peculiar problems of plant height, the relation between body mass and body length, and size-correlated variations in rates of growth. For readers unfamiliar with the basics of allometry, an appendix explains basic statistical methods. For botanists interested in an original, quantitative approach to plant evolution and function, and for zoologists who want to learn more about the value of allometric techniques for studying evolution, Plant Allometry makes a major contribution to the study of plant life.




Plant Allometry


Book Description

Allometry, the study of the growth rate of an organism's parts in relation to the whole, has produced exciting results in research on animals. Now distinguished plant biologist Karl J. Niklas has written the first book to apply allometry to studies of the evolution, morphology, physiology, and reproduction of plants. Niklas covers a broad spectrum of plant life, from unicellular algae to towering trees, including fossil as well as extant taxa. He examines the relation between organic size and variations in plant form, metabolism, reproduction, and evolution, and draws on the zoological literature to develop allometric techniques for the peculiar problems of plant height, the relation between body mass and body length, and size-correlated variations in rates of growth. For readers unfamiliar with the basics of allometry, an appendix explains basic statistical methods. For botanists interested in an original, quantitative approach to plant evolution and function, and for zoologists who want to learn more about the value of allometric techniques for studying evolution, Plant Allometry makes a major contribution to the study of plant life.




Reproductive Allocation in Plants


Book Description

Much effort has been devoted to developing theories to explain the wide variation we observe in reproductive allocation among environments. Reproductive Allocation in Plants describes why plants differ in the proportion of their resources that they allocate to reproduction and looks into the various theories. This book examines the ecological and evolutionary explanations for variation in plant reproductive allocation from the perspective of the underlying physiological mechanisms controlling reproduction and growth. An international team of leading experts have prepared chapters summarizing the current state of the field and offering their views on the factors determining reproductive allocation in plants. This will be a valuable resource for senior undergraduate students, graduate students and researchers in ecology, plant ecophysiology, and population biology. - 8 outstanding chapters dedicated to the evolution and ecology of variation in plant reproductive allocation - Written by an international team of leading experts in the field - Provides enough background information to make it accessible to senior undergraduate students - Includes over 60 figures and 29 tables




Mathematical Modelling in Plant Biology


Book Description

Progress in plant biology relies on the quantification, analysis and mathematical modeling of data over different time and length scales. This book describes common mathematical and computational approaches as well as some carefully chosen case studies that demonstrate the use of these techniques to solve problems at the forefront of plant biology. Each chapter is written by an expert in field with the goal of conveying concepts whilst at the same time providing sufficient background and links to available software for readers to rapidly build their own models and run their own simulations. This book is aimed at postgraduate students and researchers working the field of plant systems biology and synthetic biology, but will also be a useful reference for anyone wanting to get into quantitative plant biology.




Plant Resource Allocation


Book Description

Plant Resource Allocation is an exploration of the latest insights into the theory and functioning of plant resource allocation. An international team of physiological ecologists has prepared chapters devoted to the fundamental topics of resource allocation. - Comprehensive coverage of all aspects of resource allocation in plants - All contributors are leaders in their respective fields




Scaling in Biology


Book Description

Scaling relationships have been a persistent theme in biology at least since the time of Leonardo da Vinci and Galileo. While there have been many excellent empirical and theoretical investigations, there has been little attempt to synthesize this diverse but interrelated area of biology. In an effort to fill this void, Scaling in Biology, the first general treatment of scaling in biology in over 15 years, covers a broad spectrum of the most relevant topics in a series of chapters written by experts in the field. Some of those topics discussed include allometry and fractal structure, branching of vascular systems of mammals and plants, biomechanical and life history of plants, invertebrates and vertebrates, and species-area patterns of biological diversity.




The Ecophysiology of Plant-Phosphorus Interactions


Book Description

Phosphorus (P) is an essential macronutrient for plant growth. It is as phosphate that plants take up P from the soil solution. Since little phosphate is available to plants in most soils, plants have evolved a range of mechanisms to acquire and use P efficiently – including the development of symbiotic relationships that help them access sources of phosphorus beyond the plant’s own range. At the same time, in agricultural systems, applications of inorganic phosphate fertilizers aimed at overcoming phosphate limitation are unsustainable and can cause pollution. This latest volume in Springer’s Plant Ecophysiology series takes an in-depth look at these diverse plant-phosphorus interactions in natural and agricultural environments, presenting a series of critical reviews on the current status of research. In particular, the book presents a wealth of information on the genetic and phenotypic variation in natural plant ecosystems adapted to low P availability, which could be of particular relevance to developing new crop varieties with enhanced abilities to grow under P-limiting conditions. The book provides a valuable reference material for graduates and research scientists working in the field of plant-phosphorus interactions, as well as for those working in plant breeding and sustainable agricultural development.




Methods for Risk Assessment I of Transgenic Plants.


Book Description

The present book is a compilation of current test methods useful in risk assessment of transgenic plants. It is intended to aid the environmental researcher in finding and comparing relevant methods quickly and easily. It may also be used as a general reference work for field-ecologists, laboratory- biologists and others working in plant population biology and genetics. The major processes affecting the fate of plants are covered with emphasis on invasion, competition and establishment, e.g., seed dispersal, density-dependent competition, and plant growth. Ecosystem effects and genetic structure are also covered. For each process a number of relevant test methods have been selected; in total, 84 methods for field, greenhouse or laboratory research are included, employing 51 key processwords. Each method is described and evaluated briefly and succinctly, and there are comments on assumptions, restrictions, advantages, and applications. An extensive bibliography provides entry into the scientific background, and cross references make it possible quickly to find all relevant sources. Methods to study pollination and gene transfer will be considered in a future volume.




Infinite Length Modules


Book Description

This book is concerned with the role played by modules of infinite length when dealing with problems in the representation theory of groups and algebras, but also in topology and geometry; it shows the intriguing interplay between finite and infinite length modules. The volume presents the invited lectures of a conference devoted to 'Infinite Length Modules', held at Bielefeld in September 1998, which brought together experts from quite different schools in order to survey surprising relations between algebra, topology and geometry. Some additional reports have been included in order to establish a unified picture. The collection of articles, written by well-known experts from all parts of the world, is conceived as a sort of handbook which provides an easy access to the present state of knowledge and its aim is to stimulate further development.




Growth and Defence in Plants


Book Description

Plants use resources, i.e. carbon, nutrients, water and energy, either for growth or to defend themselves from biotic and abiotic stresses. This volume provides a timely understanding of resource allocation and its regulation in plants, linking the molecular with biochemical and physiological-level processes. Ecological scenarios covered include competitors, pathogens, herbivores, mycorrhizae, soil microorganisms, carbon dioxide/ozone regimes, nitrogen and light availabilities. The validity of the “Growth-Differentiation Balance Hypothesis” is examined and novel theoretical concepts and approaches to modelling plant resource allocation are discussed. The results presented can be applied in plant breeding and engineering, as well as in resource-efficient stand management in agriculture and forestry.