Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals


Book Description

Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.




Bioenergy Research: Advances and Applications


Book Description

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each




Plant Biomass Applications


Book Description

Plant Biomass Application: Materials, Modification and Characterization focuses on the unique properties associated with plant biomass, from their biodegradable, non toxic, and safe for handling characteristics to their potential in developing sustainable, climate protecting products. Plant biomass has found many applications in the fields of biomedical, food, packaging, electronics, automotive, sensors, and textile industry, however there are very few books dealing in depth with materials derived from plant biomass for versatile application fields.This book covers all aspects of plant biomass materials opportunities with focus on the value-added product generated from plant biomass such as polymers, composites, transportation fuels, chemical intermediates/bulk chemicals, or sources of heat and generated power. The conversion of plant biomass into materials product such as plastics, fabrics, and carpets and specialty chemicals, presents exciting possibilities for replacing traditionally used fossil fuels. There are higher value, and more attractive, uses for for plant biomass use than just as fuel. Meanwhile, most agriculture, forestry, and food wastes contain ligno-cellulosic resource creating a vast and diverse resource generating system for plant biomass.Plant Biomass Materials provides and in-depth discussion of the materials derived from plant biomass and their current and potential future applications. Leading researchers from industries, academics, government and private research institutions across the globe have provided their insights, making it an important reference for researchers and academics seeking to maximize plant biomass potential. - Presents basic concepts, methods, technical concepts, literature review, and detailed application in particular fields for plant biomass materials - Focuses on the processing techniques for different biomass - Describes, in detail, processing methods, value-added products, and their applications in various fields like agriculture and food industry, energy, catalysis, and bio-medicinal applications




Torrefaction of Biomass for Energy Applications


Book Description

Torrefaction of Biomass for Energy Applications: From Fundamentals to Industrial Scale explores the processes, technology, end-use, and economics involved in torrefaction at the industrial scale for heat and power generation. Its authors combine their industry experience with their academic expertise to provide a thorough overview of the topic. Starting at feedstock pretreatment, followed by torrefaction processes, the book includes plant design and operation, safety aspects, and case studies focusing on the needs and challenges of the industrial scale. Commercially available technologies are examined and compared, and their economical evaluation and life cycle assessment are covered as well. Attention is also given to non-woody feedstock, alternative applications, derived fuels, recent advances, and expected future developments. For its practical approach, this book is ideal for professionals in the biomass industry, including those in heat and power generation. It is also a useful reference for researchers and graduate students in the area of biomass and biofuels, and for decision makers, policy makers, and analysts in the energy field. - Compares efficiency and performance of different commercially available technologies from the practical aspects of daily operation in an industrial scale plant - Presents a cost analysis of the production, logistics, and storage of torrefied biomass - Includes case studies addressing challenges that may occur in the daily operation in an industrial scale plant - Covers other associated technologies, the densification of torrefied biomass, and non-woody feedstock




Plant Biomass Conversion


Book Description

A whole host of motivations are driving the development of the “renewables” industry— ranging from the desire to develop sustainable energy resources to the reduction of dangerous greenhouse gases that contribute to global warming. All energy utilized on the earth is ultimately derived from the sun through photosynthesis—the only truly renewable commodity. As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.




Biomass for Renewable Energy, Fuels, and Chemicals


Book Description

Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience




Handbook of Biomass Valorization for Industrial Applications


Book Description

HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.




Plants for the Future


Book Description

The world has come to understand only recently the importance of plants in our life. Therefore, we have brought together such book chapters that will help strengthen the scientific background of the readers on plants and deliver the message regarding plants for the future, in food security, health, industry, and other areas. This book will add to the scientific knowledge of the readers on the molecular aspects of plants.




Lignocellulosic Biomass Production and Industrial Applications


Book Description

This book covers the utilization of lignocellulosic biomass for biofuel production as well as other industrial applications such as in biotechnology, paper and pulp, chemical and bioplastics. Lignocellulosic materials such as agricultural residues (e.g., wheat straw, sugarcane bagasse, corn stover), forest products (hardwood and softwood), and crops such as switchgrass and salix, are becoming a potent source for generating valuable products. Lignocellulosic Biomass Production and Industrial Applications describes the utilization of lignocellulosic biomass for various applications. Although there have been numerous reports on lignocellulosic biomass for biofuel application, there have been very few other applications reported for lignocellulosic biomass-based biotechnology, chemicals and polymers. This book covers both application areas. Besides describing the various types of biofuel production, such as bioethanol, biobutanol, biodiesel and biogas from lignocellulosic biomass, it also presents various other lignocellulosic biomass biorefinery applications for the production of enzymes, chemicals, polymers, paper and bioplastics. In addition, there are chapters on valorization of lignocellulosic materials, alkali treatment to improve the physical, mechanical and chemical properties of lignocellulosic natural fibers, and a discussion of the major benefits, limitations and future prospects of the use of lignocellulosic biomass.




Recent Advances in Plant Biotechnology and Its Applications


Book Description

This book is divided into five sections. The first section deals with the methodology and bioresource generation, techniques related to genetic engineering, and gene transfer to the nuclear genome and chloroplast genome. The new techniques of genome profiling and gene silencing are also presented. The second section of the book covers the classical aspect of plant biotechnology viz. tissue culture and micropropagation. Use of genetic engineering via Agrobacterium and direct transfer of DNA through particle bombardment to develop transformed plants in Artemisia, castor and orchids, and production of recombinant proteins in plant cells have been dealt with in the third section. The fourth section addresses the abiotic and biotic stress tolerance in plants. The basic biology of some of the stress responses, and designing plants for stress tolerance is discussed in this section. The fifth section examines medicinal plants and alkaloid production.