Methods in Plant Biochemistry Volume 1


Book Description

Methods in Plant Biochemistry, Volume 1: Plant Phenolics reviews current knowledge about techniques used in the analysis of the biochemistry of plant polyphenols and their importance in the agricultural and food industries. It looks at the application of these techniques in the fractionation of cellular constituents, isolation of enzymes, electrophoretic separation of nucleic acids and proteins, and chromatographic identification of the intermediates and products of cellular metabolism. Organized into 15 chapters, this book opens with an overview of the general procedures and measurement of total phenolics, from detecting phenolic substances in crude plant extracts to determining which classes they belong to and the quantitative estimation of total phenol. The reader is introduced to the chemistry, structural variation, function, and distribution of each class of plant phenolics and, in a few cases where this is practicable, detailed listings of known derivatives are given. Most chapters focus on chromatographic separations and high performance liquid chromatography (HPLC), along with thin layer and paper Rf values with HPLC retention times and NMR spectroscopy. The book also outlines the procedures for the extraction, isolation, separation, and characterization of different classes of phenolic compounds, ranging from phenols and phenolic acids to phenylpropanoids, lignins, stilbenes and phenanthrenes, flavones and flavonols, chalcones and aurones, flavanoids, anthocyanins, biflavanoids, tannins, isoflavanoids, quinones, xanthones, and lichen substances. The book is a valuable resource for students, biochemists, and researchers in the plant sciences.




Association Between Lignin and Carbohydrates in Wood and Other Plant Tissues


Book Description

Throughout the world 10 million tons of wood are used every year for paper-making, cellulose preparations, tobacco filters, cloth and dietary supplements. Wood is mainly composed of polysaccharides and lignin which are hydrophilic and hydrophobic respectively. This book describes the academic approaches to native bonds between lignin and the carbohhydrates in wood and other plants. The roles of lignin-carbohydrates complexes are discussed for practical use and wood processing. The authors describe the close relationship between lignin-carbohydrate complexes and biobleaching of kraft pulp, and the residual lignin in kraft pulp and their contribution to benzylated wood foaming. In addition they introduce the artificial lignin-carbohydrate bond formation and an enzymic degradation of lignin-carbohydrate bonds.




Plant Carbohydrates II


Book Description

In 1958, a single volume in the original series of this Encyclopedia adequately summarized the state of knowledge about plant carbohydrates. Expansion into two volumes in the New Series highlights the explosive increase in information and the heightened interest that attended this class of compounds in the interven ing years. Even now the search has just begun. Much remains to be accom plished; e.g., a full description of the plant cell wall in chemical terms. Why this growing fascination with plant carbohydrates? Clearly, much credit goes to those who pioneered the complex chemistry of polyhydroxylated compounds and to those who later sorted out the biochemical features of these molecules. But there is a second aspect, the role of carbohydrates in such biological func tions as host-parasite and pollen-pistil interactions, the mating reaction in fungi, symbiosis, and secretion to name a few. Here is ample reason for anyone concerned with the plant sciences to turn aside for a moment and consider how carbohydrates, so many years neglected in favor of the study of proteins and nucleic acids, contribute to the physiological processes of growth and devel opment in plants.




Plant Carbohydrates I


Book Description

The essential features of constitution, configuration, and conformation in carbo hydrate chemistry, so well established in the . first half of this century, had yet to be exploited by those concerned with biochemical and physiological processes in plants when the original Encyclopedia appeared. Two outstanding developments, discovery of sugar nucleotides and the advent of chromatography, brought together the insight and a means of probing complexities inherent in plant carbohydrates. These advances, combined with a modern knowledge of enzymes and cellular metabolism, have provided new horizons of investigation for the student of plant physiology. This volume and its companion (Vol. 13B) present a comprehensive assess ment of the current viewpoint in plant carbohydrates with emphasis on those aspects which impinge on physiological processes of growth and development. To accommodate the extensive amount of information to be presented, subject matter has been divided, somewhat arbitrarily, into intracellular and extracellular carbohydrates, with the latter defined as carbohydrates occurring in space out side the plasma membrane (plasmalemma). This classification is not exclusive; rather it is intended to lend a degree of flexibility to the way in which subject matter is arranged between volumes. The first section of this volume addresses the occurrence, metabolism, and function of monomeric and higher saccharides of fungi, algae, and higher plants.




Storage Carbohydrates in Vascular Plants


Book Description

Occurrence and distribution of storage carbohydrates in vascular plants; Sucrose metabolism; Pathways and mechanisms associated with carbohydrate translocation in plants; Physiology and metabolism of sucrosyl-fructans; Biosynthesis of oligosaccharides in vascular plants; Physiology and metabolism of cyclitols; Physiology and metabolism of alditols; Biochemistry and physiology of synthesis of starch in leaves: autotrophic and heterotrophic chloroplasts; Degradation of starch in chloroplasts: a buffer to sucrose metabolism; Metabolism of reserve starch; Synthesis and degradation of extracellular storage polysaccharides.




Forage Quality, Evaluation, and Utilization


Book Description

Provides a historical foundation as well as a review of the state-of- the-art in forage science, detailing 25 years of progress in forage quality, evaluation, and utilization, along with the latest developments and new directions for future research. The volume is divided into six sections: overview of forage science; identification and quantitative measurement of forage quality components; intake as a critical element of forest quality; role of digestion and metabolism in determining forage quality; integrating concepts affecting changes in forage quality; and improving forage quality and evaluation. No index. Member price, $36. Annotation copyright by Book News, Inc., Portland, OR




Methods for Analysis of Carbohydrate Metabolism in Photosynthetic Organisms


Book Description

Methods for Analysis of Carbohydrate Metabolism in Photosynthetic Organisms: Plants, Green Algae and Cyanobacteria examines both general and detailed aspects of carbohydrate metabolism in photosynthetic organisms, along with the four main oligosaccharides and each enzymatic reaction that gives birth to them. Chapters include information on how biological active protein is extracted for different cells, determination of enzymatic activity, separation of proteins by different available methods, and descriptions of analytical methods for the determination of various types of carbohydrates in photosynthetic organisms. The book contains useful protocols for researchers working on the determination of carbohydrate metabolism. The book provides foundational content as well as step-by-step guidance on how to design and conduct an experiment, including what other methodologies could be used if advanced instruments are not readily available. - Includes a variety of analytical methods and how to apply the methods using examples from specific case studies - Discusses technical information on how to characterize plant carbohydrates and sugar nucleosides - Contains easy-to-follow protocols with detailed explanations for self-guidance - Provides foundational content as well as step-by-step guidance on how to design and conduct an experiment




Carbohydrate Reserves in Plants - Synthesis and Regulation


Book Description

Carbohydrate reserves constitute the major part of edible portion of the plants. Latest researches in major crops like wheat, rice, maize, barley, potato, sugarcane, sugarbeet, Jerusalem artichoke, chicory and carbohydrates in trees have been included in this book. The book will be of great value to the basic plant biochemists, molecular biologists, biotechnologists, and genetic crop engineers and to the agricultural scientists working in different disciplines related to crop productivity. This compilation may act as a medium to initiate discussions among these scientists leading to new researches in the area of crop productivity and reserve carbohydrate metabolism.







Plant Secondary Metabolism


Book Description

Life has evolved as a unified system; no organism exists similar role also has been suggested for fatty acids from alone, but each is in intimate contact with other organisms cyanolipids. Nonprotein amino acids, cyanogenic glyco and its environment. Historically, it was easier for workers sides, and the non-fatty-acid portion of cyanolipids also are in various disciplines to delimit artificially their respective incorporated into primary metabolites during germination. areas of research, rather than attempt to understand the entire Secondary metabolites of these structural types are accumu system of living organisms. This was a pragmatic and neces lated in large quantities in the seeds of several plant groups sary way to develop an understanding for the various parts. where they probably fulfill an additional function as deter We are now at a point, however, where we need to investi rents to general predation. gate those things common to the parts and, specifically, those The second type of relationship involves interaction of things that unify the parts. The fundamental aspects of many plants with other organisms and with their environment. Bio of these interactions are chemical in nature. Plants constitute logical interactions must be viewed in the light of evolution an essential part of all life systems; phytochemistry provides ary change and the coadaptation, or perhaps coevolution, of a medium for linking several fields of study.