Plant Exposure to Engineered Nanoparticles


Book Description

Plant Exposure to Engineered Nanoparticles: Uptake, Transformation, Molecular and Physiological Responses discusses the long-term exposure of plants, including agronomic crops, to nanomaterials in terrestrial environments. Chapters discuss changes in metabolite profiles in plants exposed to engineered nanomaterials, as well as modifications in elemental content of edible portions of plants. Biochemical pathways, root profiles, generational exposure, and biomass productivity are also analyzed in detail. Subsequent chapters cover risks to trophic transfer, as well as human health and ecological functions, before concluding with future approaches to plant-nanomaterial research. The book covers important aspects of the interactions between plant and nanomaterials and will be a valuable resource to scientists and researchers in plant physiology, nanotechnology, agronomy and environmental science. - Analyzes research on environmental and ecological implications of nanomaterials in plants - Includes the latest information on toxicity and human exposure - Reviews modifications and alterations in plant expressions and biochemical pathways




Engineered Nanoparticles and the Environment


Book Description

Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies




Sources, Mechanisms and Toxicity of Nanomaterials in Plants


Book Description

Plants encounter a wide range of environmental challenges during their life cycle, among which nanoparticle toxicity is a common form of abiotic stress. Nanoparticles can adversely affect various stages of the plant life cycle, such as seed germination, root and shoot growth, chloroplasts ultrastructure and photosynthesis, nutrients assimilation, carbohydrates metabolism, and plant hormonal status, which collectively result in reduced plant yields. Sources, Mechanisms and Toxicity of Nanomaterials in Plants discusses the plant physiology and chemistry involved when plants encounter nanoparticles. Key topics include effects of nanoparticles on photosynthetic responses, regulation of nanoparticle toxicity by nitric oxide, and regulation of nanoparticle toxicity by exogenous application of primary and secondary metabolites. This is the first volume in the new Nanomaterials-Plant Interactions series and is an essential read to all researchers and scientists interested in plant physiology and chemistry, agronomy, nanotechnology and environmental science. Analyses how nanoparticle toxicity impacts the plant life cycle Includes the latest information on the range of coping mechanisms plants use to combat nanotoxicity Reviews protectants, such as endogenous signaling molecules, and their role in protecting the plant from nanotoxicity




Nanopesticides


Book Description

This book explores the development of nanopesticides and tests of their biological activity against target organisms. It also covers the effects of nanopesticides in the aquatic and terrestrial environments, along with related subjects including fate, behaviour, mechanisms of action and toxicity. Moreover, the book discusses the potential risks of nanopesticides for non-target organisms, as well as regulatory issues and future perspectives.




Nanotechnology in Plant Growth Promotion and Protection


Book Description

Discover the role of nanotechnology in promoting plant growth and protection through the management of microbial pathogens In Nanotechnology in Plant Growth Promotion and Protection, distinguished researcher and author Dr. Avinash P. Ingle delivers a rigorous and insightful collection of some of the latest developments in nanotechnology particularly related to plant growth promotion and protection. The book focuses broadly on the role played by nanotechnology in growth promotion of plants and their protection through the management of different microbial pathogens. You’ll learn about a wide variety of topics, including the role of nanomaterials in sustainable agriculture, how nano-fertilizers behave as soil feed, and the dual role of nanoparticles in plant growth promotion and phytopathogen management. You’ll also discover why nanotechnology has the potential to revolutionize the current agricultural landscape through the development of nano-based products, like plant growth promoters, nano-fertilizers, nano-pesticides, and nano-insecticides. Find out why nano-based products promise to be a cost-effective, economically viable, and eco-friendly approach to tackling some of the most intractable problems in agriculture today. You’ll also benefit from the inclusion of: A thorough introduction to the prospects and impacts of using nanotechnology to promote the growth of plants and control plant diseases An exploration of the effects of titanium dioxide nanomaterials on plant growth and the emerging applications of zinc-based nanoparticles in plant growth promotion Practical discussions of nano-fertilizer in enhancing the production potentials of crops and the potential applications of nanotechnology in plant nutrition and protection for sustainable agriculture A concise treatment of nanotechnology in seed science and soil feed Toxicological concerns of nanomaterials used in agriculture Perfect for undergraduate, graduate, and research students of nanotechnology, agriculture, plant science, plant physiology, and crops, Nanotechnology in Plant Growth Promotion and Protection will also earn a place in the libraries of professors and researchers in these areas, as well as regulators and policymakers.




Toxicity of Nanoparticles in Plants


Book Description

Toxicity of Nanoparticles in Plants: An Evaluation of Cyto/Morpho-physiological, Biochemical and Molecular Responses, Volume Five in the Nanomaterial-Plant Interactions series, reviews the latest research on toxicological effects of using nanotechnology in plants. Key themes include analyzing plant exposure to nanomaterials, mechanisms of toxicity of nanoparticles to plants, and effects, uptake and translocation of various different nanoparticles. This will be an essential read for any scientist or researcher looking to assess and understand the potential toxicological risks associated with plant nanotechnology. To date, nanotechnology is considered one of the most promising areas of research due to the widespread applications of nanomaterials in plant science and agriculture. However, extensive use of nano-based products raises concerns regarding their toxicity in crop plants, their environmental impact and potential consequences to humans via the food chain. - Discusses environmental concerns raised by the extensive use of nanotechnology - Highlights the impact of plants treated with nanoparticles on nutritional status - Reviews major challenges for assessing the toxicity of nanomaterials in plants




Nanotechnology and Plant Sciences


Book Description

This book presents a holistic view of the complex and dynamic responses of plants to nanoparticles, the signal transduction mechanisms involved, and the regulation of gene expression. Further, it addresses the phytosynthesis of nanoparticles, the role of nanoparticles in the antioxidant systems of plants and agriculture, the beneficial and harmful effects of nanoparticles on plants, and the application of nanoparticles and nanotubes to mass spectrometry, aiming ultimately at an analysis of the metabolomics of plants. The growing numbers of inventions in the field of nanotechnology are producing novel applications in the fields of biotechnology and agriculture. Nanoparticles have received much attention because of the unique physico-chemical properties of these compounds. In the life sciences, nanoparticles are used as “smart” delivery systems, prompting the Nobel Prize winner P. Ehrlich to refer to these compounds as “magic bullets.” Nanoparticles also play an important role in agriculture as compound fertilizers and nano-pesticides, acting as chemical delivery agents that target molecules to specific cellular organelles in plants. The influence of nanoparticles on plant growth and development, however, remains to be investigated. Lastly, this book reveals the research gaps that must be bridged in the years to come in order to achieve larger goals concerning the applications of nanotechnology in the plants sciences. In the 21st century, nanotechnology has become a rapidly emerging branch of science. In the world of physical sciences, nanotechnological tools have been exploited for a broad range of applications. In recent years, nanoparticles have also proven useful in several branches of the life sciences. In particular, nanotechnology has been employed in drug delivery and related applications in medicine.




The ELSI Handbook of Nanotechnology


Book Description

This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.




Nanomaterials in the Environment


Book Description

This text presents the most current knowledge on the environmental impact of materials and products developed using nanotechnology. Although nanomaterials are revolutionising electronics, medicine, transportation and many other industries, they pose risks to living beings and ecosystems that are barely understood. Leading researchers here consider the science of nanomaterials, their behaviour in the environment, risk assessment and toxicology, and the future of nanomaterials.




Phytotoxicity of Nanoparticles


Book Description

This book provides relevant findings on nanoparticles’ toxicity, their uptake, translocation and mechanisms of interaction with plants at cellular and sub-cellular level. The small size and large specific surface area of nanoparticles endow them with high chemical reactivity and intrinsic toxicity. Such unique physicochemical properties draw global attention of scientists to study potential risks and adverse effects of nanoparticles in the environment. Their toxicity has pronounced effects and consequences for plants and ultimately the whole ecosystem. Plants growing in nanomaterials-polluted sites may exhibit altered metabolism, growth reduction, and lower biomass production. Nanoparticles can adhere to plant roots and exert physicochemical toxicity and subsequently cell death in plants. On the other hand, plants have developed various defense mechanisms against this induced toxicity. This books discusses recent findings as well as several unresolved issues and challenges regarding the interaction and biological effects of nanoparticles. Only detailed studies of these processes and mechanisms will allow researchers to understand the complex plant-nanomaterial interactions.