Statistics and Truth


Book Description

Written by one of the top most statisticians with experience in diverse fields of applications of statistics, the book deals with the philosophical and methodological aspects of information technology, collection and analysis of data to provide insight into a problem, whether it is scientific research, policy making by government or decision making in our daily lives.The author dispels the doubts that chance is an expression of our ignorance which makes accurate prediction impossible and illustrates how our thinking has changed with quantification of uncertainty by showing that chance is no longer the obstructor but a way of expressing our knowledge. Indeed, chance can create and help in the investigation of truth. It is eloquently demonstrated with numerous examples of applications that statistics is the science, technology and art of extracting information from data and is based on a study of the laws of chance. It is highlighted how statistical ideas played a vital role in scientific and other investigations even before statistics was recognized as a separate discipline and how statistics is now evolving as a versatile, powerful and inevitable tool in diverse fields of human endeavor such as literature, legal matters, industry, archaeology and medicine.Use of statistics to the layman in improving the quality of life through wise decision making is emphasized.




Phylogenomic Discordance in Plant Systematics


Book Description

Phylogenetics often uncovers contradicting hypotheses regarding the relationships within the same group of organisms, a phenomenon known since the beginning of the molecular systematics era. While, historically, single marker-based analyses produced discordance, nowadays entire cellular genomes or portions of the same genomic compartment conflict with others or the rest, respectively. In contrast to the beginning of the molecular systematics era, when adding markers and taxa offered a way out of systematic errors, genome inference-based incongruences cannot be addressed and explained easily. Disagreeing phylogenomic hypotheses might originate from various evolutionary processes, including but not limited to hybridization or incomplete lineage sorting, thereby leading to gene tree-versus species tree-associated discrepancies. Today, this can be expanded to genome discordance, where phylogenomic signals of organellar genomes (plastid, mitochondrial) and the nuclear genome disagree due to intrinsically different coalescent paths or phenomena like organelle capture.




Phylogenomics


Book Description

Phylogenomics: A Primer, Second Edition is for advanced undergraduate and graduate biology students studying molecular biology, comparative biology, evolution, genomics, and biodiversity. This book explains the essential concepts underlying the storage and manipulation of genomics level data, construction of phylogenetic trees, population genetics, natural selection, the tree of life, DNA barcoding, and metagenomics. The inclusion of problem-solving exercises in each chapter provides students with a solid grasp of the important molecular and evolutionary questions facing modern biologists as well as the tools needed to answer them.




Plant Genomes


Book Description

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.




Bioinformatics and Phylogenetics


Book Description

This volume presents a compelling collection of state-of-the-art work in algorithmic computational biology, honoring the legacy of Professor Bernard M.E. Moret in this field. Reflecting the wide-ranging influences of Prof. Moret’s research, the coverage encompasses such areas as phylogenetic tree and network estimation, genome rearrangements, cancer phylogeny, species trees, divide-and-conquer strategies, and integer linear programming. Each self-contained chapter provides an introduction to a cutting-edge problem of particular computational and mathematical interest. Topics and features: addresses the challenges in developing accurate and efficient software for the NP-hard maximum likelihood phylogeny estimation problem; describes the inference of species trees, covering strategies to scale phylogeny estimation methods to large datasets, and the construction of taxonomic supertrees; discusses the inference of ultrametric distances from additive distance matrices, and the inference of ancestral genomes under genome rearrangement events; reviews different techniques for inferring evolutionary histories in cancer, from the use of chromosomal rearrangements to tumor phylogenetics approaches; examines problems in phylogenetic networks, including questions relating to discrete mathematics, and issues of statistical estimation; highlights how evolution can provide a framework within which to understand comparative and functional genomics; provides an introduction to Integer Linear Programming and its use in computational biology, including its use for solving the Traveling Salesman Problem. Offering an invaluable source of insights for computer scientists, applied mathematicians, and statisticians, this illuminating volume will also prove useful for graduate courses on computational biology and bioinformatics.




Phylogenetic Supertrees


Book Description

This is the first book on "phylogenetic supertrees", a recent, but controversial development for inferring evolutionary trees. Rather than analyze the combined primary character data directly, supertree construction proceeds by combining the tree topologies derived from those data. This difference in strategy has allowed for the exciting possibility of larger, more complete phylogenies than are otherwise currently possible, with the potential to revolutionize evolutionarily-based research. This book provides a comprehensive look at supertrees, ranging from the methods used to build supertrees to the significance of supertrees to bioinformatic and biological research. Reviews of many the major supertree methods are provided and four new techniques, including a Bayesian implementation of supertrees, are described for the first time. The far-reaching impact of supertrees on biological research is highlighted both in general terms and through specific examples from diverse clades such as flowering plants, even-toed ungulates, and primates. The book also critically examines the many outstanding challenges and problem areas for this relatively new field, showing the way for supertree construction in the age of genomics. Interdisciplinary contributions from the majority of the leading authorities on supertree construction in all areas of the bioinformatic community (biology, computer sciences, and mathematics) will ensure that this book is a valuable reference with wide appeal to anyone interested in phylogenetic inference.







Molecular Evolution and Phylogenetics


Book Description

During the last ten years, remarkable progress has occurred in the study of molecular evolution. Among the most important factors that are responsible for this progress are the development of new statistical methods and advances in computational technology. In particular, phylogenetic analysis of DNA or protein sequences has become a powerful tool for studying molecular evolution. Along with this developing technology, the application of the new statistical and computational methods has become more complicated and there is no comprehensive volume that treats these methods in depth. Molecular Evolution and Phylogenetics fills this gap and present various statistical methods that are easily accessible to general biologists as well as biochemists, bioinformatists and graduate students. The text covers measurement of sequence divergence, construction of phylogenetic trees, statistical tests for detection of positive Darwinian selection, inference of ancestral amino acid sequences, construction of linearized trees, and analysis of allele frequency data. Emphasis is given to practical methods of data analysis, and methods can be learned by working through numerical examples using the computer program MEGA2 that is provided.




Phylogenomics


Book Description

This unique textbook provides a clear and concise overview of the key principles of the complex field of phylogenomics, with a particular focus on sequencing technologies that are crucial to studying and understanding interrelations in evolutionary genomics. It includes chapters dedicated to the analysis of nucleotide sequences using assembling and alignment methods and also discusses the main strategies for phylogenetic studies, systematic errors and their correction. This highly readable textbook is intended for graduate students and young researchers with an interest in phylogenetics and evolutionary developmental biology.