Plant Responses to Biotic and Abiotic Stresses: Lessons from Cell Signaling


Book Description

Facing stressful conditions imposed by their environment and affecting their growth and their development throughout their life cycle, plants must be able to perceive, to process and to translate different stimuli into adaptive responses. Understanding the organism-coordinated responses involves a fine description of the mechanisms occurring at the cellular and molecular level. A major challenge is also to understand how the large diversity of molecules identified as signals, sensors or effectors could drive a cell to the appropriate plant response and to finally cope with various environmental cues. In this Research Topic we aim to provide an overview of various signaling mechanisms or to present new molecular signals involved in stress response and to demonstrate how basic/fundamental research on cell signaling will help to understand stress responses at the whole plant level.




Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1


Book Description

Plant diseases, extreme weather caused by climate change, drought and an increase in metals in soil are amongst the major limiting factors of crop production worldwide. They devastate not only food supply but also the economy of a nation. Keeping in view of the global food scarcity, there is, an urgent need to develop crop plants with increased stress tolerance so as to meet the global food demands and to preserve the quality of our planet. In order to do this, it is necessary to understand how plants react and adapt to stress from the genomic and proteomic perspective. Plants adapt to stress conditions by activation of cascades of molecular mechanisms, which result in alterations in gene expression and synthesis of protective proteins/compounds. From the perception of the stimulus to transduction of the signal, followed by an appropriate response, the plants employ a complex network of primary and secondary messenger molecules. Cell signaling is the component of a complex system of communication that directs basic cellular activities and synchronizes cell actions. Cells exercise a large number of noticeably distinct signaling pathways to regulate their activity. In order to contend with different environmental adversities plants have developed a series of mechanisms at the physiological, cellular and molecular level. This two volume set takes an in-depth look at the Stress Signaling in Plants from a uniquely genomic and proteomics perspective. Stress Signaling in Plants offers a comprehensive treatise on the Chapter, covering all of the signaling pathways and mechanisms that have been researched so far. Each chapter provides in-depth explanation of what we currently know of a particular aspect of stress signaling and where we are headed. All authors have currently agreed and abstracts have been complied for the first volume, due out midway through 2012. We aim to have the second volume out at the beginning of 2013.​




Phytohormones and Stress Responsive Secondary Metabolites


Book Description

Phytohormones and Stress Responsive Secondary Metabolites provides a deep dive into the signaling pathways associated with phytohormones and phytometabolites. With a strong focus on plant stress responses and DNA technology, the book highlights plant biotechnology and metabolic engineering principles. Biotechnology, by using DNA editing technologies, allows the expression of plant genes into other plant species with desirable modulation on plant behavior. Beginning with an overview of phytohormone signaling, growth and abiotic and biotic stresses, subsequent chapters explore DNA modification strategies, epigenetic and epigenomic regulation, and miRNA regulation. This book will be an essential resource for students, researchers and agriculturalists interested in plant physiology, plant genetics and plant biotechnology. - Provides a comprehensive review of phytohormone and phytometabolite signaling pathways - Highlights recombinant DNA technology and therapeutic potential - Analyzes plant stress responses under both abiotic and biotic stresses




Abiotic Stress Signaling in Plants: Functional Genomic Intervention


Book Description

Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (Arabidopsis and rice were mostly studied) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence, microgravity and salinity signals is still a major question for plant biologist. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity. Therefore, in this e-Book, we intend to incorporate the contribution from leading plant biologists to elucidate several aspects of stress signaling by functional genomics approaches.




Molecular Plant Abiotic Stress


Book Description

A close examination of current research on abiotic stresses in various plant species The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance. Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book: Covers a wide range of abiotic stresses in multiple plant species Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species Compiles the most recent research and up-to-date data on stress tolerance Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances Written and edited by prominent scientists and researchers from across the globe Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.




Biotic and Abiotic Stress Responses in Crop Plants


Book Description

This book is a printed edition of the Special Issue "Biotic and Abiotic Stress Responses in Crop Plants" that was published in Agronomy




Plant Signaling Molecules


Book Description

Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses




Plant Stress Biology


Book Description

This unique book covers the molecular aspects of plant stress and the various industrial applications. Chapters cover many important topics in the biology of plant stress, including morphological and physiological changes of plants due to accumulation of pollutants; the types of stress for enhanced biofuel production from plant biomass; plant adaptation due to different types of environmental stresses; potential applications of microRNAs to improve abiotic stress tolerance in plants; plant resistance to viruses and the molecular aspects; photosynthesis under stress conditions; plant responses to weeds, pests, pathogens, and agrichemical stress conditions; and plant responses under the stress of drought. Key features: • Describes the different types of plant stress • Details the current and possible applications of plant stress biology • Presents several case studies that include applications of plant stress • Explores plant stress biology for applications in biofuel science Plant Stress Biology: Progress and Prospects of Genetic Engineering will be useful for researchers in diverse fields as well as for plant biologists, environmental biologists, faculty, and students. The book will also be helpful for further advancement of research in the area of plant stress biology.




Abiotic Stresses in Plants


Book Description

This book provides a valuable insight into how the area of plant adaptation to abiotic stresses has progressed through the application of the new technologies. The book consists of eight chapters written by outstanding scientists across the world, who carry out research at the cutting edge of their disciplines. The topics, addressed in up-to-date specific chapters, include effects and responses of plants to stresses caused by such factors as: 1) high temperature, 2) low temperature (chilling and freezing), 3) salt, 4) drought, 5) flooding, 6) heavy metals, 7) elevated carbon dioxide, 8) ozone.




Plant Abiotic Stress Physiology


Book Description

This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.