Plant Reverse Genetics


Book Description

After the generation of genome sequence data from a wide variety of plants, databases are filled with sequence information of genes with no known biological function, and while bioinformatics tools can help analyze genome sequences and predict gene structures, experimental approaches to discover gene functions need to be widely implemented. In Plant Reverse Genetics: Methods and Protocols, leading researchers in the field describe cutting-edge methods, both high-throughput and genome-wide, involving the models Arabidopsis and rice as well as several other plants to provide comparative functional genomics information. With chapters on the analysis of high-throughput genome sequence data, the identification of non-coding RNA from sequence information, the comprehensive analysis of gene expression by microarrays, and metabolomic analysis, the thorough methods of the book are fully supported by scripts to aid their computational use. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters contain introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and essential, Plant Reverse Genetics: Methods and Protocols is an ideal guide for researchers seeking an understanding of how the complex web of plant genes work together in a systems biology view.




Plant Functional Genomics


Book Description

Functional genomics is a young discipline whose origin can be traced back to the late 1980s and early 1990s, when molecular tools became available to determine the cellular functions of genes. Today, functional genomics is p- ceived as the analysis, often large-scale, that bridges the structure and organi- tion of genomes and the assessment of gene function. The completion in 2000 of the genome sequence of Arabidopsis thaliana has created a number of new and exciting challenges in plant functional genomics. The immediate task for the plant biology community is to establish the functions of the approximately 25,000 genes present in this model plant. One major issue that will remain even after this formidable task is c- pleted is establishing to what degree our understanding of the genome of one model organism, such as the dicot Arabidopsis, provides insight into the or- nization and function of genes in other plants. The genome sequence of rice, completed in 2002 as a result of the synergistic interaction of the private and public sectors, promises to significantly enrich our knowledge of the general organization of plant genomes. However, the tools available to investigate gene function in rice are lagging behind those offered by other model plant systems. Approaches available to investigate gene function become even more limited for plants other than the model systems of Arabidopsis, rice, and maize.




Biotechnologies for Plant Mutation Breeding


Book Description

This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.




Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools


Book Description

The basic concept of this book is to examine the use of innovative methods augmenting traditional plant breeding towards the development of new crop varieties under different environmental conditions to achieve sustainable food production. This book consists of two volumes: Volume 1 subtitled Breeding, Biotechnology and Molecular Tools and Volume 2 subtitled Agronomic, Abiotic and Biotic Stress Traits. This is Volume 1 which consists of 21 chapters covering domestication and germplasm utilization, conventional breeding techniques and the role of biotechnology. In addition to various biotechnological applications in plant breeding, it includes functional genomics, mutations and methods of detection, and molecular markers. In vitro techniques and their applications in plant breeding are discussed with an emphasis on embryo rescue, somatic cell hybridization and somaclonal variation. Other chapters cover haploid breeding, transgenics, cryogenics and bioinformatics.




Ecological Genomics


Book Description

Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation.




Biotechnologies and Genetics in Plant Mutation Breeding


Book Description

"An indispensable source for researchers, teachers, and graduate and postgraduate students interested in mutation breeding and genetic engineering. It introduces readers to contemporary knowledge and state-of-the-art technologies in the field of mutation breeding, including fundamental mechanisms and applications. . . . It will provide new directions, and avenues for enhancement of food security and food quality by using the latest techniques for the 'mutation as breeding' approach." - From Prof. Jameel M. Al-Khayri, King Faisal University, Saudi Arabia This comprehensive three-volume set book aims to help combat the challenge of providing enough food for the world by the use of advanced genetic processes to improve crop production, both in quantity and quality. Volume 1: Mutagenesis and Crop Improvement discusses mutagenesis, cytotoxicity, and crop improvement, covering the processes, mutagenic effectiveness, and mechanisms. The volume emphasizes the improvement of agronomic characteristics by manipulating the genotype of plant species, resulting in increased productivity. Volume 2: Revolutionizing Plant Biology covers the use of mutagenesis and biotechnology to explore the variability of mutant genes for crop improvement. The chapters deal with in-vitro mutagenesis to exploit the somaclonal variations induced in cell culture and highlight the importance of in-vitro mutagenesis in inducing salt resistance, heat resistance, and drought resistance. Volume 3: Mechanisms for Genetic Manipulation of Plants and Plant Mutants reviews the genetic engineering techniques used to mutate genes and to incorporate them into different plant species of cereals, pulses, vegetables, and fruits. Also discussed are the principles of genetic engineering by which desired genes can be transferred from plants to animals to microorganisms and vice versa.




Genomics-Assisted Crop Improvement


Book Description

This superb volume provides a critical assessment of genomics tools and approaches for crop breeding. Volume 1 presents the status and availability of genomic resources and platforms, and also devises strategies and approaches for effectively exploiting genomics research. Volume 2 goes into detail on a number of case studies of several important crop and plant species that summarize both the achievements and limitations of genomics research for crop improvement.




Reverse Genetic Approaches Reveal Gene Redundancy in Arabidopsis Anthers


Book Description

When aquatic plants migrated to land 500 million years ago, they were met with harsh conditions associated with terrestrial life, such as dry air, high radiance light, and high effective gravity. Early plants of this time period underwent rapid evolution to develop novel plant traits to mitigate these challenges - these traits remain highly conserved in modern land plants. Among the most important of these traits is the biosynthesis of a unique polymer known as sporopollenin, which protects the vulnerable plant spore and pollen grain. Sporopollenin is considered to be the toughest known biopolymer and although chemists and botanists have studied this remarkable material for over a century, relatively little is known about sporopollenin compared to other major plant biopolymers. In this thesis, I employ reverse genetic approaches to identify novel Arabidopsis genes that are responsible for sporopollenin biosynthesis. With these methods, I identify a previously unstudied gene, hereby known as IPE2 , which acts redundantly with IPE1 in the synthesis of sporopollenin. Additionally, I identify two unstudied peroxidases, PRX9 and PRX40 , which are also redundant and critical for pollen development, although these are not involved in sporopollenin and instead crosslink cell wall extensin proteins. These works enhance our understanding of the pollen wall and of pollen development. Moreover, this work reveals the untapped potential of reverse genetics to predict redundant relationships between paralogs in well-studied model organisms.







Plant Functional Genomics


Book Description

Discover cutting-edge knowledge for engineering a more productive and environment-friendly agriculture! In Plant Functional Genomics, you’ll find a cross-section of state-of-the-art research on the biological function of plant genes and how they work together in health and disease. World-leading scientists in the field present breakthrough techniques, discuss the results of projects aimed at dissecting particular plant functions, and provide an overview on the state of functional genomics for several plant and plant-related species. With figures, tables, and illustrations, this book will help scientists, researchers, and advanced students in botany find new ways of creating novel plant forms to better serve the needs of a rapidly expanding human population. Plant Functional Genomics will increase your understanding of gene networks and systems rules, as well as gene expression during specific conditions or development or treatments. This important resource contains a wealth of data generated by various plant genome sequencing projects, including the newest results from experiments with Arabidopsis thaliana—the first plant to be completely sequenced. This book also contains innovative research on: T-DNA mutagenesis transcriptomics and metabolic profiling in plants large-scale yeast two-hybrid analyses the exceptional model system of Chlamydomonas genomics functional genomics in rice, maize, and Physcomitrella prospects for functional genomics in a new model grass chloroplast and plant mitochondrial proteomics plant transporters so much more Plant Functional Genomics will help speed up the identification and isolation of genes that might be of interest with respect to diverse biological questions. This valuable contribution to the field clarifies the challenges yet to be faced and the opportunities that could some day expand the frontiers of plant sciences.