Non-Thermal Plasma Technology for Polymeric Materials


Book Description

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering




Materials Surface Processing by Directed Energy Techniques


Book Description

The current status of the science and technology related to coatings, thin films and surface modifications produced by directed energy techniques is assessed in Materials Surface Processing by Directed Energy Techniques. The subject matter is divided into 20 chapters - each presented at a tutorial level – rich with fundamental science and experimental results. New trends and new results are also evoked to give an overview of future developments and applications. - Provides a broad overview on modern coating and thin film deposition techniques, and their applications - Presents and discusses various problems of physics and chemistry involved in the production, characterization and applications of coatings and thin films - Each chapter includes experimental results illustrating various models, mechanisms or theories







Plasma Catalysis


Book Description

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.




Unit Manufacturing Processes


Book Description

Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.




Biodegradable Green Composites


Book Description

This book comprehensively addresses surface modification of natural fibers to make them more effective, cost-efficient, and environmentally friendly. Topics include the elucidation of important aspects surrounding chemical and green approaches for the surface modification of natural fibers, the use of recycled waste, properties of biodegradable polyesters, methods such as electrospinning, and applications of hybrid composite materials.







Spark Plasma Sintering of Materials


Book Description

This book describes spark plasma sintering (SPS) in depth. It addresses fundamentals and material-specific considerations, techniques, and applications across a broad spectrum of materials. The book highlights methods used to consolidate metallic or ceramic particles in very short times. It highlights the production of complex alloys and metal matrix composites with enhanced mechanical and wear properties. Emphasis is placed on the speed of the sintering processes, uniformity in product microstructure and properties, reduced grain growth, the compaction and sintering of materials in one processing step, various materials processing, and high energy efficiency. Current and potential applications in space science and aeronautics, automation, mechanical engineering, and biomedicine are addressed throughout the book.