Plasma Nanoscience


Book Description

Filling the need for a single work specifically addressing how to use plasma for the fabrication of nanoscale structures, this book is the first to cover plasma deposition in sufficient depth. The author has worked with numerous R&D institutions around the world, and here he begins with an introductory overview of plasma processing at micro- and nanoscales, as well as the current problems and challenges, before going on to address surface preparation, generation and diagnostics, transport and the manipulation of nano units.




Plasma Processing of Nanomaterials


Book Description

We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.




Plasma Engineering


Book Description

Plasma Engineering is the first textbook that addresses plasma engineering in the aerospace, nanotechnology, and bioengineering fields from a unified standpoint. It covers the fundamentals of plasma physics at a level suitable for an upper level undergraduate or graduate student, and applies the unique properties of plasmas (ionized gases) to improve processes and performance over a wide variety of areas such as materials processing, spacecraft propulsion, and nanofabrication. The book starts by reviewing plasma particle collisions, waves, and instabilities, and proceeds to diagnostic tools, such as planar, spherical, and emissive probes, and the electrostatic analyzer, interferometric technique, and plasma spectroscopy. The physics of different types of electrical discharges are considered, including the classical Townsend mechanism of gas electrical breakdown and the Paschen law. Basic approaches and theoretical methodologies for plasma modeling are described, based on the fluid description of plasma solving numerically magnetohydrodynamic (MHD) equations and the kinetic model particle techniques that take into account kinetic interactions among particles and electromagnetic fields. Readers are then introduced to the widest variety of applications in any text on the market, including space propulsion applications and application of low-temperature plasmas in nanoscience and nanotechnology. The latest original results on cold atmospheric plasma (CAP) applications in medicine are presented. The book includes a large number of worked examples, end of chapter exercises, and historical perspectives. There is also an accompanying plasma simulation software covering the Particle in Cell (PIC) approach, available at http://www.particleincell.com/blog/2011/particle-in-cell-example/. This book is appropriate for grad level courses in Plasma Engineering/Plasma Physics in departments of Aerospace Engineering, Electrical Engineering, and Physics. It will also be useful as an introduction to plasma engineering and its applications for early career researchers and practicing engineers. - The first textbook that addresses plasma engineering in the aerospace, nanotechnology, and bioengineering fields from a unified standpoint - Includes a large number of worked examples, end of chapter exercises, and historical perspectives - Accompanying plasma simulation software covering the Particle in Cell (PIC) approach, available at http://www.particleincell.com/blog/2011/particle-in-cell-example/




Encyclopedia of Plasma Technology - Two Volume Set


Book Description

Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Plasma Engineering


Book Description

Plasma Engineering, Second Edition, applies the unique properties of plasmas (ionized gases) to improve processes and performance over many fields, such as materials processing, spacecraft propulsion and nanofabrication. The book considers this rapidly expanding discipline from a unified standpoint, addressing fundamentals of physics and modeling, as well as new and real-word applications in aerospace, nanotechnology and bioengineering. This updated edition covers the fundamentals of plasma physics at a level suitable for students using application examples and contains the widest variety of applications of any text on the market, spanning the areas of aerospace engineering, nanotechnology and nanobioengineering. This is highly useful for courses on plasma engineering or plasma physics in departments of Aerospace Engineering, Electrical Engineering and Physics. It is also useful as an introduction to plasma engineering and its applications for early career researchers and practicing engineers. - Features new material relevant to application, including emerging areas of plasma nanotechnology and medicine - Contains a new chapter on plasma-based control, as well as a description of RF and microwave-based plasma applications, plasma lighting, reforming and other most recent application areas - Provides a technical treatment of the fundamental and engineering principles used in plasma applications




Advances in Magnetic Materials


Book Description

Advances in Magnetic Materials: Processing, Properties, and Performance discusses recent developments of magnetic materials, including fabrication, characterization and applications in the aerospace, biomedical, and semiconductors industries. With contributions by international professionals who possess broad and varied expertise, this volume encompasses both bulk materials and thin films and coatings for magnetic applications. A timely reference book that describes such things as ferromagnetism, nanomaterials, and Fe, ZnO, and Co-based materials, Advances in Magnetic Materials is an ideal text for students, researchers, and professionals working in materials science. Describes recent developments of magnetic materials, including fabrication, characterization, and applications Addresses a variety of industrial applications, such as aerospace, biomedical, and semiconductors Discusses bulk materials and thin films and coatings Covers ferromagnetism, nanomaterials, Fe, ZnO, and Co-based materials Contains the contributions of international professionals with broad and varied expertise Covers a holistic range of magnetic materials in various aspects of process, properties, and performance




Plasma and Fusion Science


Book Description

In this new book, an interdisciplinary and international team of experts provides an exploration of the emerging plasma science that is poised to make the plasma technology a reality in the manufacturing sector. The research presented here will stimulate new ideas, methods, and applications in the field of plasma science and nanotechnology. Plasma technology applications are being developed that could impact the global market for power, electronics, mineral, and other fuel commodities. Currently, plasma science is described as a revolutionary discipline in terms of its possible impact on industrial applications. It offers potential solutions to many problems using emerging techniques. In this book the authors provide a broad overview of recent trends in field plasma science and nanotechnology. Divided into several parts, Plasma and Fusion Science: From Fundamental Research to Technological Applications explores some basic plasma applications and research, space and atmospheric plasma, nuclear fusion, and laser plasma and industrial applications of plasma. A wide variety of cutting-edge topics are covered, including: • basic plasma physics • computer modeling for plasma • exotic plasma (including dusty plasma) • industrial plasma applications • laser plasma • nuclear fusion technology • plasma diagnostics • plasma processing • pulsed power • space astrophysical plasma • plasma and nanotechnology Pointing to current and possible future developments in plasma science and technology, the diverse research presented here will be valuable for researchers, scientists, industry professionals, and others involved in the revolutionary field of plasma and fusion science.




Non-Thermal Plasma Technology for Polymeric Materials


Book Description

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering




Perspectives of nanoscience and nanotechnology


Book Description

Acta Materialia Gold Medal Workshop Selected, peer reviewed papers from Acta Materialia Gold Medal Workshop, E-MRS Fall Meeting, Warsaw University of Technology, 17th – 21st September, 2007




Nanoscience & Nanotechnology'02


Book Description

This book is a record of the proceedings, taking place November 30 - December 1, 2001 in Sofia, Bulgaria. Contents include: Fullerence structures and clusters obtained from cyclic hydrocarbon; Factors influencing the aggregation of silica nanoparticles produced by thermal arc plasma method; Photochemical deposition of nanosize CdS layers; Synthesis of boron nitride nano-sized particles; differential impedance analysis of systems with diffusion limitations; IR Spectroscopy study of copper nanoparticles; Nanocomposites based on lead-borate gel glasses; Nanosized cobalt oxides as bifunctional electrocatalyst for oxygen reduction and evolution