Plasma Fluidized Bed


Book Description

This book provides a detailed overview of the plasma fluidized bed. It is an innovative tool and generally combines plasma process with another efficient reactor, fluidized bed, providing an excellent method for particulate processes over conventional technology. The development and designs of typical types of plasma fluidized beds, mainly thermal plasma fluidized beds and non-thermal plasma fluidized beds are discussed. The influencing factors on the performance of plasma fluidized beds are analyzed in detail. The mechanism, i.e. the discharge characteristics, hydrodynamics, heat transfer and mass transfer are analyzed to offer a further insight of plasma fluidized beds. Applications of plasma fluidized beds for different areas, including metallurgy extraction, green energy process, environmental protection and advanced materials are presented. The book is a valuable reference for scientists, engineers and graduate students in chemical engineering and relative fields.







Plasma Technologies for Textiles


Book Description

Plasma technologies present an environmentally-friendly and versatile way of treating textile materials in order to enhance a variety of properties such as wettability, liquid repellency, dyeability and coating adhesion. Recent advances made in commercially viable plasma systems have greatly increased the potential of using plasma technology in industrial textile finishing. This pioneering book provides an essential guide to both the technology and science related to plasmas and its practical applications in the textile industry.The first part of the book discusses the science and technology behind plasmas. Chapters give detailed and comprehensive descriptions on the characteristics of plasmas and methods of control and treatment in the processing of textiles. Both low pressure cold plasma and atmospheric pressure cold plasma processes are described as well as the diagnosis and control of plasma parameters in plasma generating reactors. A chapter is devoted to the use of plasma technology to achieve nanoscale treatment of textile surfaces. The second part of the book concentrates on specific applications of plasma technologies. Chapters cover treatments for water and oil repellency of textiles, engineering of biomedical textiles and woollen finishing techniques through the use of plasma technologies. Further chapters cover the modification of fibres for use in composites and the potential use of plasma technologies for the finishing of fabrics made of man made fibres. The final chapter in the book gives a comprehensive analysis of the surface chemical and physical characterisation of plasma treated fabrics.Written by a distinguished international team of experts, Plasma technologies for textiles is an invaluable reference for researchers, scientists and technologists alike. - Summarises both the science and technology of plasma processing, and its practical applications - Discusses how plasma technology improves textile properties such as wettability and liquid repelling - An invaluable reference for researchers, scientists and technologists




Sustainable Textiles


Book Description

Environmental issues are playing an increasingly important role in the textile industry, both from the point of view of government regulation and consumer expectations. Sustainable textiles reviews ways of achieving more sustainable materials and technologies as well as improving recycling in the industry.The first part of the book discusses ways of improving sustainability at various points in the supply chain. Chapters discuss how sustainability can be integrated into textile design, ensuring more sustainable production of both natural and synthetic fibres, improving sustainability in processes such as dyeing as well as more environmentally-friendly technologies including enzyme and plasma technologies. The second part of the book reviews consumer perceptions of recycled textiles, eco-labelling, organic textiles and the use of recycled materials in textile products.With a distinguished editor and an impressive range of international contributors, Sustainable textiles is an important reference for the textile industry and those researching this important topic. - Reviews government regulations and consumer expectations about environmental impact on the textiles industry - Discusses ways of achieving more sustainable materials and technologies as well as textiles recycling - Examines how sustainability can be integrated into textile design, production and processes




Advanced Techniques for Surface Engineering


Book Description

The hardest requirements on a material are in general imposed at the surface: it has to be wear resistant for tools and bearings; corrosion resistant for turbine blades; antireflecting for solar cells; and it must combine several of these properties in other applications. `Surface engineering' is the general term that incorporates all the techniques by which a surface modification can be accomplished. These techniques include both the more traditional methods, such as nitriding, boriding and carburizing, and the newer ones, such as ion implantation, laser beam melting and, in particular, coating. This book comprises and compares in a unique way all these techniques of surface engineering. It is a compilation of lectures which were held by renowned scientists and engineers in the frame of the well known `EuroCourses' of the Joint Research Centre of the Commission of the European Communities. The book is principally addressed to material and surface scientists, physicists and chemists, engineers and technicians of industries and institutes where surface engineering problems arise.




Fluid Bed Technology in Materials Processing


Book Description

Fluid Bed Technology in Materials Processing comprehensively covers the various aspects of fluidization engineering and presents an elaborate examination of the applications in a multitude of materials processing techniques. This singular resource discusses: All the basic aspects of fluidization essential to understand and learn about various techniques The range of industrial applications Several examples in extraction and process metallurgy Fluidization in nuclear engineering and nuclear fuel cycle with numerous examples Innovative techniques and several advanced concepts of fluidization engineering, including use and applications in materials processing as well as environmental and bio-engineering Pros and cons of various fluidization equipment and specialty of their applications, including several examples Design aspects and modeling Topics related to distributors effects and flow regimes A separate chapter outlines the importance of fluidization engineering in high temperature processing, including an analysis of the fundamental concepts and applications of high temperature fluidized bed furnaces for several advanced materials processing techniques. Presenting information usually not available in a single source, Fluid Bed Technology in Materials Processing serves Fluidization engineers Practicing engineers in process metallurgy, mineral engineering, and chemical metallurgy Researchers in the field of chemical, metallurgical, nuclear, biological, environmental engineering Energy engineering professionals High temperature scientists and engineers Students and professionals who adopt modeling of fluidization in their venture for design and scale up




Non-Thermal Plasma Technology for Polymeric Materials


Book Description

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering




Handbook of Industrial Water Soluble Polymers


Book Description

Natural and synthetic water soluble polymers are used in a wide range of familiar industrial and consumer products, including coatings and inks, papers, adhesives, cosmetics and personal care products. They perform a variety of functions without which these products would be significantly more expensive, less effective or both. Written for research, development and formulation chemists, technologists and engineers at graduate level and beyond in the fine and specialty chemicals, polymers, food and pharmaceutical industries, the Handbook of Industrial Water Soluble Polymers deals specifically with the functional properties of both natural and synthetic water soluble polymers. By taking a function based approach, rather than a “polymer specific” approach the book illustrates how polymer structure leads to effect, and shows how different polymer types can be employed to achieve appropriate product properties.




Laser-Surface Interactions for New Materials Production


Book Description

This book provides an overview on nanosecond and ultra-short laser-induced phenomena and the related diagnostics. It grew from the lectures of the International School "Laser-surface interactions for new materials production" held in July 2008.




Surface Treatment of Materials for Adhesive Bonding


Book Description

Aimed at engineers and materials scientists in a wide range of sectors, this book is a unique source of surface preparation principles and techniques for plastics, thermosets, elastomers, ceramics and metals bonding. With emphasis on the practical, it draws together the technical principles of surface science and surface treatments technologies to enable practitioners to improve existing surface preparation processes to improve adhesion and, as a result, enhance product life. This book describes and illustrates the surface preparations and operations that must be applied to a surface before acceptable adhesive bonding is achieved. It is meant to be an exhaustive overview, including more detailed explanation where necessary, in a continuous and logical progression. The book provides a necessary grounding in the science and practice of adhesion, without which adequate surface preparation is impossible. Surface characterization techniques are included, as is an up-to-date assessment of existing surface treatment technologies such as Atmospheric Plasma, Degreasing, Grit blasting, laser ablation and more. Fundamental material considerations are prioritised over specific applications, making this book relevant to all industries using adhesives, such as medical, automotive, aerospace, packaging and electronics. This second edition represents a full and detailed update, with all major developments in the field included and three chapters added to cover ceramic surface treatment, plasma treatment of non-metallic materials, and the effect of additives on surface properties of plastics. - A vital resource for improving existing surface treatment processes to increase product life by creating stronger, more durable adhesive bonds - Relevant across a variety of industries, including medical, automotive and packaging - Provides essential grounding in the science of surface adhesion, and details how this links with the practice of surface treatment