Plasma Surface Modification of Polymers: Relevance to Adhesion


Book Description

This book is a collection of invited papers (previously published in special issues of the Journal of Adhesion Science and Technology) written by internationally recognized researchers actively working in the field of plasma surface modification. It provides a current, comprehensive overview of the plasma treatment of polymers. In contrast to plasm




Plasma Surface Modification and Plasma Polymerization


Book Description

In current materials R&D, high priority is given to surface modification techniques to achieve improved surface properties for specific applications requirements. Plasma treatment and polymerization are important technologies for this purpose. This book provides a basic and thorough presentation of this subject. This is probably the first book




Atmospheric Pressure Plasma Treatment of Polymers


Book Description

An indispensable volume detailing the current and potential applications of atmospheric pressure plasma treatment by experts practicing in fields around the world Polymers are used in a wide variety of industries to fabricate legions of products because of their many desirable traits. However, polymers in general (and polyolefins, in particular) are innately not very adhesionable because of the absence of polar or reactive groups on their surfaces and concomitant low surface energy. Surface treatment of polymers, however, is essential to impart reactive chemical groups on their surfaces to enhance their adhesion characteristic. Proper surface treatment can endow polymers with improved adhesion without affecting the bulk properties. A plethora of techniques (ranging from wet to dry, simple to sophisticated, vacuum to non-vacuum) for polymer surface modification have been documented in the literature but the Atmospheric Pressure Plasma (APP) treatment has attracted much attention because it offers many advantages vis-a-vis other techniques, namely uniform treatment, continuous operation, no need for vacuum, simplicity, low cost, no environmental or disposal concern, and applicability to large area samples. Although the emphasis in this book is on the utility of APP treatment for enhancement of polymer adhesion, APP is also applicable and effective to modulate many other surface properties of polymers: superhydrophilicity, superhydrophobicity, anti-fouling, anti-fogging, anti-icing, cell adhesion, biocompatibility, tribological behavior, etc. The key features of Atmospheric Pressure Plasma Treatment of Polymers: Address design and functions of various types of reactors Bring out current and potential applications of APP treatment Represent the cumulative wisdom of many key academic and industry researchers actively engaged in this key and enabling technology




Surface Modification of Polymers


Book Description

A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.




Silane Coupling Agents


Book Description

* It has been rumored that a bumble bee has such aerodynamic deficiencies that it should be incapable of flight. Fiberglass-reinforced polymer com posites, similarly, have two (apparently) insurmountable obstacles to per formance: 1) Water can hydrolyze any conceivable bond between organic and inorganic phase, and 2) Stresses across the interface during temperature cycling (resulting from a mismatch in thermal expansion coefficients) may exceed the strength of one of the phases. Organofunctional silanes are hybrid organic-inorganic compounds that are used as coupling agents across the organic-inorganic interface to help overcome these two obstacles to composite performance. One of their functions is to use the hydrolytic action of water under equilibrium condi tions to relieve thermally induced stresses across the interface. If equilib rium conditions can be maintained, the two problems act to cancel each other out. Coupling agents are defined primarily as materials that improve the practical adhesive bond of polymer to mineral. This may involve an increase in true adhesion, but it may also involve improved wetting, rheology, and other handling properties. The coupling agent may also modify the inter phase region to strengthen the organic and inorganic boundary layers.




Plasma Modification of Polyolefins


Book Description

This book addresses plasma modification of polyolefin surfaces. It comprises 21 chapters divided into three major sections. The first section covers the different techniques used for plasma modification of polyolefin surfaces and the effects of various gases as a surrounding medium, while the second provides a detailed analysis of the physics and chemistry of plasma modification and discusses various innovative characterization techniques, as well as ageing of the modified surface. It focuses on the analysis of changes in polymers’ surface chemistry using various spectroscopic techniques, and of changes in their surface morphology after plasma treatment using optical microscopy, electron microscopy and atomic force microscopy. In addition, it provides detailed information on the characterization of modified polymer surfaces. The book’s third and last section covers a range of applications of plasma-modified polyolefin surfaces varying from the packaging industry to the biomedical field, and shares valuable insights on the lifecycle analysis of plasma modification and modified surfaces.




Polymer Surfaces and Interfaces


Book Description

In what is an extremely practical and applicable new work, experts provide concise explanations, with examples and illustrations, of the key techniques in this important field. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems. They will know that the surfaces and interfaces of polymers play an important role in most of the application areas of polymers, from moulds, foils, and composites, to biomaterials and applications in micro- and nanotechnology.




Surface Modification of Polymeric Biomaterials


Book Description

Proceedings of the American Chemical Society Division of Polymer Chemistry International Symposium held in Anaheim, California, April 2-6, 1995




The Plasma Chemistry of Polymer Surfaces


Book Description

More than 99% of all visible matter in the universe occurs as highly ionized gas plasma with high energy content. Electrical low- and atmospheric-pressure plasmas are characterized by continuous source of moderate quantities of energy or enthalpy transferred predominantly as kinetic energy of electrons. Therefore, such energetically unbalanced plasmas have low gas temperature but produce sufficient energy for inelastic collisions with atoms and molecules in the gas phase, thus producing reactive species and photons, which are able to initiate all types of polymerizations or activate any surface of low reactive polymers. However, the broadly distributed energies in the plasma exceed partially the binding energies in polymers, thus initiating very often unselective reactions and polymer degradation. The intention of this book is to present new plasma processes and new plasma reactions of high selectivity and high yield. This book aims to bridge classical and plasma chemistry, particularly focusing on polymer chemistry in the bulk and on the surface under plasma exposure. The stability of surface functionalization and the qualitative and quantitative measurement of functional groups at polymer surface are featured prominently, and chemical pathways for suppressing the undesirable side effects of plasma exposure are proposed and illustrated with numerous examples. Special attention is paid to the smooth transition from inanimate polymer surfaces to modified bioactive polymer surfaces. A wide range of techniques, plasma types and applications are demonstrated.




Biodegradable Green Composites


Book Description

This book comprehensively addresses surface modification of natural fibers to make them more effective, cost-efficient, and environmentally friendly. Topics include the elucidation of important aspects surrounding chemical and green approaches for the surface modification of natural fibers, the use of recycled waste, properties of biodegradable polyesters, methods such as electrospinning, and applications of hybrid composite materials.