Plasma Technology for Hyperfunctional Surfaces


Book Description

Based on a project backed by the European Union, this is a must-have resource for researchers in industry and academia concerned with application-oriented plasma technology research. Clearly divided in three sections, the first part is dedicated to the fundamentals of plasma and offers information about scientific and theoretical plasma topics, plasma production, surface treatment process and characterization. The second section focuses on technological aspects and plasma process applications in textile, food packaging and biomedical sectors, while the final part is devoted to concerns about the environmental sustainability of plasma processes.




A Study on the Effect of Plasma Modification on the Comfort Properties of Polyester/Cotton Blend Fabric


Book Description

In this dissertation, the effect of cold plasma treatment on the comfort properties of P/C blend fabric has been studied in a low pressure plasma reactor. The plasma treatment was conducted on the samples of 65% polyester and 35% cotton blend fabric using argon, oxygen and air, separately, as well as mixtures of O2/HMDSO, N2/HMDSO, H2O/HMDSO and HMDSO monomer alone as working gases. Special attention was given to oxygen plasma due to its wide application for various textile/polymer materials. Due to this reason, the Taguchi method was used to design, analyze and optimize the oxygen plasma process. Other plasma parameters including working pressure, discharge power, duration of treatment and flow rate were also considered. The various comfort properties of plasma treated and untreated P/C blend fabric have been studied. In particular, thermal comfort such as, water vapor, air permeability, thermal resistance and wickability as well as tactile comfort including hand-feel and electro-physical properties were investigated. As the results showed that the oxygen plasma treatment had a positive effect on the thermal comfort and resistivity properties of P/C the blend fabric.




Nanotubes and Nanosheets


Book Description

Reveals Innovative Research on BN Nanotubes and NanosheetsNanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials is the first book devoted to nanotubes and nanosheets made of boron nitride (BN). It shows how the properties of BN nanotubes and nanosheets have led to many exciting applications where carb




The Chemistry of Environmental Engineering


Book Description

The focus of this book is the chemistry of environmental engineering and its applications, with a special emphasis on the use of polymers in this field. It explores the creation and use of polymers with special properties such as viscoelasticity and interpenetrating networks; examples of which include the creation of polymer-modified asphalt as well as polymers with bacterial adhesion properties. The text contains the issues of polymerization methods, recycling methods, wastewater treatment, types of contaminants, such as microplastics, organic dyes, and pharmaceutical residues. After a detailed overview of polymers in Chapter 1, their special properties are discussed in the following chapter. Among the topics is the importance of polymers to water purification procedures, since their use in the formation of reverse osmosis membranes do not show biofouling. Chapter 3 details special processing methods, such as atom transfer radical polymerization, enzymatic polymerization, plasma treatment, and several other methods, can be used to meet the urgent demands of industrial applications. Chapter 4 addresses the important environmental issue of recycling methods as they relate to several types of materials such as PET bottles, tire rubbers, asphalt compositions, and other engineering resins. And wastewater treatment is detailed in Chapter 5, in which the types of contaminants, such as microplastics, organic dyes and pharmaceutical residues, are described and special methods for their proper removal are detailed along with types of adsorbents, including biosorbents. Still another important issue for environmental engineering chemistry is pesticides. Chapter 6 is a thorough description of the development and fabrication of special sensors for the detection of certain pesticides. A detailed presentation of the electrical uses of polymer-based composites is given in Chapter 7, which include photovoltaic materials, solar cells, energy storage and dielectric applications, light-emitting polymers, and fast-charging batteries. And recent issues relating to food engineering, such as food ingredient tracing, protein engineering, biosensors and electronic tongues, are presented in Chapter 8. Finally, polymers used for medical applications are described in Chapter 9. These applications include drug delivery, tissue engineering, porous coatings and also the special methods used to fabricate such materials.




Plasma Chemistry and Catalysis in Gases and Liquids


Book Description

Filling the gap for a book that covers not only plasma in gases but also in liquids, this is all set to become the standard reference for this topic. It provides a broad-based overview of plasma-chemical and plasmacatalytic processes generated by electrical discharges in gases, liquids and gas/liquid environments in both fundamental and applied aspects by focusing on their environmental and green applications and also taking into account their practical and economic viability. With the topics addressed by an international group of major experts, this is a must-have for scientists, engineers, students and postdoctoral researchers specializing in this field.




Textiles and Clothing


Book Description

This timely and important book aims to help achieve a more sustainable textile industry; researchers from both textile and environmental domains will benefit from reading it. Since it is imperative to rehabilitate our damaged environmental ecosystems, there is a pressing demand for more sustainable green processes in the textile and clothing industry. As a consequence, greater emphasis needs to be placed on research into eco-friendly processes particularly suited for this industry. With this goal in mind, all environmental aspects relating to the textile and clothing industry are discussed in this book in four broad areas: Highlights the negative impact on the environment by textile industries; Discusses textiles finishing by natural or eco-friendly means; Promotes natural dyes as environment-friendly alternatives to synthetics; Reviews textile effluents remediation via chemical, physical and bioremediation. Included in the 11 informative chapters are topics covering the correlation between the environment and the processing and utilization of textiles and clothing. The book opens with a discussion on the direct impact that the textile industry has on the environment. The hazardous environmental consequences that synthetic dyes used to color textiles have on the environment are highlighted in the next chapter. Greener alternatives to dyeing are discussed in detail in the next chapters followed by a discussion of eco-friendly ways of finishing textiles. The book concludes with a section of chapters providing solutions to address the environmental hazards associated with the textile industry.




Introduction to Plasma Technology


Book Description

Written by a university lecturer with more than forty years experience in plasma technology, this book adopts a didactic approach in its coverage of the theory, engineering and applications of technological plasmas. The theory is developed in a unified way to enable brevity and clarity, providing readers with the necessary background to assess the factors that affect the behavior of plasmas under different operating conditions. The major part of the book is devoted to the applications of plasma technology and their accompanying engineering aspects, classified by the various pressure and density regimes at which plasmas can be produced. Two chapters on plasma power supplies round off the book. With its broad range of topics, from low to high pressure plasmas, from characterization to modeling, and from materials to components, this is suitable for advanced undergraduates, postgraduates and professionals in the field.




Sustainable Apparel


Book Description

Sustainability is an issue that increasingly concerns all those involved in the apparel industry, including textile manufacturers, apparel designers, retailers and consumers. This important book covers recent advances and novel technologies in the key areas of production, processing and recycling of apparel. Part One addresses sustainable finishing and dyeing processes for textiles. The first two chapters concentrate on the environmental impact of fabric finishing, including water consumption, emissions and waste management. Further chapters focus on plasma and enzymatic treatments for sustainable textile processing, and the potential for improving the sustainability of dyeing technologies. Part Two covers issues of design, retail and recycling, and includes discussions of public attitudes towards sustainability in fashion, methods of measuring apparel sustainability and social trends in the re-use of apparel. - Reviews sustainable finishing and dyeing processes for textiles - Addresses social attitudes towards and methods for measuring sustainability in the apparel industry and retail sectors - Covers recycling of apparel




Advances in Plasma Treatment of Textile Surfaces


Book Description

Advances in Plasma Treatment of Textile Surfaces offers a detailed overview on the use of plasma in natural and synthetic textiles, and also explores recent applications in technical textiles including composites, ballistic performance, functionalization and textile wastewater treatment.This promising technology can alter the surface properties of textiles without having a significant effect on their bulk properties, leading to potential improvements to the scouring, de-sizing, dyeing, finishing, printing, and laminating processes among others.Drawing on an international team of contributors from industry as well as academia, this important book is bringing these innovative sustainable plasma treatments to textile and polymer scientists everywhere working in the field of textile functionalization. - Provides detailed technical descriptions of cutting-edge applications of plasma in nanotechnology, biotechnology, and other fields - Describes the different kinds of plasma treatment equipment and compares their use for different effects - Starts with overviews of basic information such as how to determine surface properties




Innovative Food Processing Technologies


Book Description

Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review, Three Volume Set covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others.