Plasticity, Failure and Fatigue in Structural Materials - From Macro to Nano


Book Description

This book contains papers from the symposium held to honor Professor Hael Mughrabi, who devoted 40 years of research to the mechanical behavior of materials. In particular, Professor Mughrabi performed fundamental studies on the mechanisms of plastic deformation and fatigue based on dislocation mechanics. Readers of this book will find research development in deformation and fatigue including very high cycle fatigue of advanced engineering materials. Particular emphasis is given to mechanical properties of nanomaterials, and to the behavior and processes at the nanoscale in engineering materials. Specific subjects include deformation and fracture mechanisms; single crystals; mathematical modeling; cyclic, static and dynamic loading; and damage evolution.




Microstructural Design of Advanced Engineering Materials


Book Description

The choice of a material for a certain application is made taking into account its properties. If, for example one would like to produce a table, a hard material is needed to guarantee the stability of the product, but the material should not be too hard so that manufacturing is still as easy as possible - in this simple example wood might be the material of choice. When coming to more advanced applications the required properties are becoming more complex and the manufacturer`s desire is to tailor the properties of the material to fit the needs. To let this dream come true, insights into the microstructure of materials is crucial to finally control the properties of the materials because the microstructure determines its properties. Written by leading scientists in the field of microstructural design of engineering materials, this book focuses on the evolution and behavior of granular microstructures of various advanced materials during plastic deformation and treatment at elevated temperatures. These topics provide essential background and practical information for materials scientists, metallurgists and solid state physicists.




Copper Alloys


Book Description

Copper has been used for thousands of years. In the centuries, both handicraft and industry have taken advantage of its easy castability and remarkable ductility combined with good mechanical and corrosion resistance. Although its mechanical properties are now well known, the simple f.c.c. structure still makes copper a model material for basic studies of deformation and damage mechanism in metals. On the other hand, its increasing use in many industrial sectors stimulates the development of high-performance and high-efficiency copper-based alloys. After an introduction to classification and casting, this book presents modern techniques and trends in processing copper alloys, such as the developing of lead-free alloys and the role of severe plastic deformation in improving its tensile and fatigue strength. Finally, in a specific section, archaeometallurgy techniques are applied to ancient copper alloys. The book is addressed to engineering professionals, manufacturers and materials scientists.




Fatigue of Heavy-Vehicle Engine Materials


Book Description

Due to increasing demands on sustainability exerted by end-costumers and policy makers, heavyvehicle manufacturers are urged to increase the engine efficiency in order to reduce the exhaust gas emission. However, increasing the efficiency is also associated with an elevated fatigue rate of the materials constituting the engine parts, which consequently reduces the engine service life. The aim of the present thesis is therefore to confront the expected increase by studying the fatigue behaviour and damage mechanisms of the materials typically employed in heavy-vehicle diesel engines. With this knowledge, this work seeks to guide the development of new heavy-vehicle engine materials, as well as to develop improved life estimation methods designated to assist the mechanical design of durable heavy-vehicle engines. In essence, a large set of thermo-mechanical fatigue (TMF) and combined thermomechanical and high-cycle fatigue (TMF-HCF) tests is conducted at engine load conditions on laboratory specimens of lamellar, compacted and spheroidal graphite iron. In this way, the fatigue performance and associated damage mechanisms are investigated. In particular, a new fatigue property is identified, the TMF-HCF threshold, which quantifies how resistant a material is to superimposed high-cycle fatigue. The damage mechanism at low temperatures (?500°C) is confirmed to consist of the initiation, propagation and coalescence of numerous microcracks. Based on this, a successful fatigue life estimation model is formulated, allowing accurate estimations of TMF and TMF-HCF tests on smooth specimens, and TMF tests on notched specimens. In the latter case, the microcrack growth behaviour in non-uniform cyclic stress fields and its implications for life estimation are clarified. At elevated temperatures (?500°C), surface oxidation is shown to govern the fatigue performance of cast iron grades intended for exhaust manifolds. It is observed that oxide intrusions are induced, from which surface fatigue cracks are initiated. Consequently, an optimal material at these conditions should have a low oxide growth rate and few casting defects at the surface, as these factors are found to stimulate the growth of intrusion.




Plasticity, Failure and Fatigue in Structural Materials-from Macro to Nano


Book Description

This book contains papers from the symposium held to honor Professor Hael Mughrabi, who devoted 40 years of research to the mechanical behavior of materials. In particular, Professor Mughrabi performed fundamental studies on the mechanisms of plastic deformation and fatigue based on dislocation mechanics. Readers of this book will find research development in deformation and fatigue including very high cycle fatigue of advanced engineering materials. Particular emphasis is given to mechanical properties of nanomaterials, and to the behavior and processes at the nanoscale in engineering materials. Specific subjects include deformation and fracture mechanisms; single crystals; mathematical modeling; cyclic, static and dynamic loading; and damage evolution.




Fatigue of Materials and Structures


Book Description

The design of mechanical structures with improved and predictable durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading experts in the field, this book (which is complementary to Fatigue of Materials and Structures: Application to Damage and Design, also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. The book deals with crack initiation, crack growth, low-cycle fatigue, gigacycle fatigue, shorts cracks, fatigue micromechanisms and the local approach to fatigue damage, corrosion fatigue, environmental effects and variable amplitude loadings, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of mechanical, structural, civil, design, nuclear, and aerospace engineering as well as materials science.




Size-Scale Effects in the Failure Mechanisms of Materials and Structures


Book Description

Invited international contributions to this exciting new research field are included in this volume. It contains the specially selected papers from 45 key specialists given at the Symposium held under the auspices of the prestigious International Union of Theoretical and Applied Mechanics at Turin in October 1994.




Micro and Nano Mechanical Testing of Materials and Devices


Book Description

Nanoscale and nanostructured materials have exhibited different physical properties from the corresponding macroscopic coarse-grained materials due to the size confinement. As a result, there is a need for new techniques to probe the mechanical behavior of advanced materials on the small scales. Micro and Nano Mechanical Testing of Materials and Devices presents the latest advances in the techniques of mechanical testing on the micro- and nanoscales, which are necessary for characterizing the mechanical properties of low-dimensional materials and structures. Written by a group of internationally recognized authors, this book covers topics such as: Techniques for micro- and nano- mechanical characterization; Size effects in the indentation plasticity; Characterization of low-dimensional structure including nanobelts and nanotubes; Characterization of smart materials, including piezoelectric materials and shape memory alloys; Analysis and modeling of the deformation of carbon-nanotubes. Micro and Nano Mechanical Testing of Materials and Devices is a valuable resource for engineers and researchers working in the area of mechanical characterization of advanced materials.




Engineering Plasticity and Its Applications


Book Description

The aim is to introduce recent advances in engineering plasticity and its applications. The scope covers a wide range of topics on metals, rock soil, rubber, ceramics, polymers, composites, etc., which are involved in engineering plasticity. The papers represent a diverse nature of engineering plasticity and its application, which include constitutive modeling, damage, fracture, fatigue and failure, crash dynamics, structural plasticity, multi-scale plasticity, crystal plasticity, etc.




Engineering Plasticity And Its Applications - Proceedings Of The 10th Asia-pacific Conference


Book Description

The aim is to introduce recent advances in engineering plasticity and its applications. The scope covers a wide range of topics on metals, rock soil, rubber, ceramics, polymers, composites, etc., which are involved in engineering plasticity. The papers represent a diverse nature of engineering plasticity and its application, which include constitutive modeling, damage, fracture, fatigue and failure, crash dynamics, structural plasticity, multi-scale plasticity, crystal plasticity, etc.