Platform Based Design at the Electronic System Level


Book Description

Platform Based Design at the Electronic System Level presents a multi-faceted view of the challenges facing the electronic industry in the development and integration of complex heterogeneous systems, including both hardware and software components. It analyses and proposes solutions related to the provision of integration platforms by System on Chip and Integrated Platform providers in light of the needs and requirements expressed by the system companies: they are the users of such platforms, which they apply to develop their next-generation products. This is the first book to examine ESL from perspectives of system developer, platform provider and Electronic Design Automation.




Electronic System Level Design


Book Description

Electronic System Level Design: an Open-Source Approach is based on the successful experience acquired with the conception of the ADL ArchC, the development of its underlying tool suite, and the building of its platform modeling infrastructure. With more than 10000 accesses per year since 2004, the dissemination of ArchC models reached not only students in quest of proper infrastructure to develop their research projects but also some companies in need of processor models to build virtual platforms using SystemC. The need to anticipate the development of hardware-dependent software and to build virtual prototypes gave rise to Transaction Level Modeling (TLM). Since SystemC provided the elements and the adequate abstraction level for supporting TLM, their relation has grown so strong that OSCI created a TLM Working Group whose effort resulted in the recently released TLM 2.0 standard, which is also covered in this book.




Surviving the SOC Revolution


Book Description

From the reviews: "This book crystallizes what may become a defining moment in the electronics industry - the shift to platform-based design. It provides the first comprehensive guidebook for those who will build, and use, the integration platforms that may soon drive the system-on-chip revolution." Electronic Engineering Times




ESL Models and their Application


Book Description

This book arises from experience the authors have gained from years of work as industry practitioners in the field of Electronic System Level design (ESL). At the heart of all things related to Electronic Design Automation (EDA), the core issue is one of models: what are the models used for, what should the models contain, and how should they be written and distributed. Issues such as interoperability and tool transportability become central factors that may decide which ones are successful and those that cannot get sufficient traction in the industry to survive. Through a set of real examples taken from recent industry experience, this book will distill the state of the art in terms of System-Level Design models and provide practical guidance to readers that can be put into use. This book is an invaluable tool that will aid readers in their own designs, reduce risk in development projects, expand the scope of design projects, and improve developmental processes and project planning.




ESL Design and Verification


Book Description

Visit the authors' companion site! http://www.electronicsystemlevel.com/ - Includes interactive forum with the authors!Electronic System Level (ESL) design has mainstreamed – it is now an established approach at most of the world's leading system-on-chip (SoC) design companies and is being used increasingly in system design. From its genesis as an algorithm modeling methodology with 'no links to implementation', ESL is evolving into a set of complementary methodologies that enable embedded system design, verification and debug through to the hardware and software implementation of custom SoC, system-on-FPGA, system-on-board, and entire multi-board systems. This book arises from experience the authors have gained from years of work as industry practitioners in the Electronic System Level design area; they have seen "SLD" or "ESL" go through many stages and false starts, and have observed that the shift in design methodologies to ESL is finally occurring. This is partly because of ESL technologies themselves are stabilizing on a useful set of languages being standardized (SystemC is the most notable), and use models are being identified that are beginning to get real adoption. ESL DESIGN & VERIFICATION offers a true prescriptive guide to ESL that reviews its past and outlines the best practices of today.Table of ContentsCHAPTER 1: WHAT IS ESL? CHAPTER 2: TAXONOMY AND DEFINITIONS FOR THE ELECTRONIC SYSTEM LEVEL CHAPTER 3: EVOLUTION OF ESL DEVELOPMENT CHAPTER 4: WHAT ARE THE ENABLERS OF ESL? CHAPTER 5: ESL FLOW CHAPTER 6: SPECIFICATIONS AND MODELING CHAPTER 7: PRE-PARTITIONING ANALYSIS CHAPTER 8: PARTITIONING CHAPTER 9: POST-PARTITIONING ANALYSIS AND DEBUG CHAPTER 10: POST-PARTITIONING VERIFICATION CHAPTER 11: HARDWARE IMPLEMENTATION CHAPTER 12: SOFTWARE IMPLEMENTATION CHAPTER 13: USE OF ESL FOR IMPLEMENTATION VERIFICATION CHAPTER 14: RESEARCH, EMERGING AND FUTURE PROSPECTS APPENDIX: LIST OF ACRONYMS* Provides broad, comprehensive coverage not available in any other such book * Massive global appeal with an internationally recognised author team * Crammed full of state of the art content from notable industry experts




Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology


Book Description

The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.




Languages, Design Methods, and Tools for Electronic System Design


Book Description

This book brings together a selection of the best papers from the twentiethedition of the Forum on specification and Design Languages Conference (FDL), which took place on September 18-20, 2017, in Verona, Italy. FDL is a well-established international forum devoted to dissemination of research results, practical experiences and new ideas in the application of specification, design and verification languages to the design, modeling and verification of integrated circuits, complex hardware/software embedded systems, and mixed-technology systems. Covers modeling and verification methodologies targeting digital and analog systems; Addresses firmware development and validation; Targets both functional and non-functional properties; Includes descriptions of methods for reliable system design.




Embedded Systems Handbook


Book Description

Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area of computer engineering with a currently appropriate emphasis on developments in networking and applications. Those experts directly involved in the creation and evolution of the ideas and technologies presented offer tutorials, research surveys, and technology overviews that explore cutting-edge developments and deployments and identify potential trends. This first self-contained volume of the handbook, Embedded Systems Design and Verification, is divided into three sections. It begins with a brief introduction to embedded systems design and verification. It then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Those interested in taking their work with embedded systems to the network level should complete their study with the second volume: Network Embedded Systems.




System-on-Chip Methodologies & Design Languages


Book Description

System-on-Chip Methodologies & Design Languages brings together a selection of the best papers from three international electronic design language conferences in 2000. The conferences are the Hardware Description Language Conference and Exhibition (HDLCon), held in the Silicon Valley area of USA; the Forum on Design Languages (FDL), held in Europe; and the Asia Pacific Chip Design Language (APChDL) Conference. The papers cover a range of topics, including design methods, specification and modeling languages, tool issues, formal verification, simulation and synthesis. The results presented in these papers will help researchers and practicing engineers keep abreast of developments in this rapidly evolving field.




Embedded Systems Handbook 2-Volume Set


Book Description

During the past few years there has been an dramatic upsurge in research and development, implementations of new technologies, and deployments of actual solutions and technologies in the diverse application areas of embedded systems. These areas include automotive electronics, industrial automated systems, and building automation and control. Comprising 48 chapters and the contributions of 74 leading experts from industry and academia, the Embedded Systems Handbook, Second Edition presents a comprehensive view of embedded systems: their design, verification, networking, and applications. The contributors, directly involved in the creation and evolution of the ideas and technologies presented, offer tutorials, research surveys, and technology overviews, exploring new developments, deployments, and trends. To accommodate the tremendous growth in the field, the handbook is now divided into two volumes. New in This Edition: Processors for embedded systems Processor-centric architecture description languages Networked embedded systems in the automotive and industrial automation fields Wireless embedded systems Embedded Systems Design and Verification Volume I of the handbook is divided into three sections. It begins with a brief introduction to embedded systems design and verification. The book then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Networked Embedded Systems Volume II focuses on selected application areas of networked embedded systems. It covers automotive field, industrial automation, building automation, and wireless sensor networks. This volume highlights implementations in fast-evolving areas which have not received proper coverage in other publications. Reflecting the unique functional requirements of different application areas, the contributors discuss inter-node communication aspects in the context of specific applications of networked embedded systems.