Modeling Aircraft Contrails and Emission Plumes for Climate Impacts


Book Description

Aircraft emissions lead to contrails and change cloud coverage in the upper troposphere/lower stratosphere, but their quantitative impact on climate is highly uncertain. As environmental policy turns toward regulating anthropogenic climate change components, it will be necessary to improve quantification of the climate impacts of aviation. Toward this end, we present two models of aircraft emissions. The first model is a large eddy simulation (LES) with three-dimensional, eddy-resolving flow physics and ice deposition/sublimation microphysics. Modeled ice properties, cloud optical depths, and contrail width growth rates are consistent with observational field studies. A series of sensitivity cases shows the effect of various parameters over twenty minutes of simulation time. The analysis focuses on properties such as contrail optical depth and cross-sectional width that are relevant to climate impacts. Vertical wind shear is found to have the strongest effect on these properties through the kinematic spreading of the contrail. In cases with no shear, optical depth is most sensitive to aircraft type and ambient humidity. One model parameter, the effective emission index of ice crystals, is also found to affect optical depth. A subset of the LES cases is run for two hours of simulation time to approach the scale of dynamical time steps modeled by global climate simulations. These cases use more realistic ice microphysics, including sedimentation, and forced ambient turbulence, both of which are processes that control contrail development at late times. The second model is a simple, low cost parameterization of aircraft plume dynamics, intended to be used as a subgrid plume model (SPM) within large scale atmospheric simulations. The SPM provides basic plume cross-section time advancement that has been used as a dilution model within a coupled global atmosphere-ocean climate simulation to study the effects of aviation on air quality and climate. Comparison to the twenty-minute and two-hour LES results demonstrates that the SPM captures important plume development characteristics under the effect of vertical shear and atmospheric turbulence.




Aviation and the Global Atmosphere


Book Description

This Intergovernmental Panel on Climate Change Special Report is the most comprehensive assessment available on the effects of aviation on the global atmosphere. The report considers all the gases and particles emitted by aircraft that modify the chemical properties of the atmosphere, leading to changes in radiative properties and climate change, and modification of the ozone layer, leading to changes in ultraviolet radiation reaching the Earth. This volume provides accurate, unbiased, policy-relevant information and is designed to serve the aviation industry and the expert and policymaking communities.




TAO


Book Description




Micro-physical Modeling of Aircraft Exhaust Plumes and Condensation Trails


Book Description

The ability to quantitatively assess the environmental impacts of air transport operations is necessary to estimate their current and future impacts on the environment. Emissions from aircraft engines are a significant contributor to atmospheric NOx driving climate change, air quality impacts and other environmental concerns. To quantify these effects, global chemistry-transport models are frequently used. However, such models assume homogeneous and instant dilution into large-scale grid cells and therefore neglect micro-physical processes, such as contrail formation, occurring in aircraft wakes. This assumption leads to inaccurate estimates of NOy partitioning, and thus, an over-prediction of ozone production. To account for non-linear plume processes, a Lagrangian aircraft plume model has been implemented. It includes a unified tropospheric-stratospheric chemical mechanism that incorporates heterogeneous chemistry. Micro-physical processes are considered throughout the entire plume lifetime. The dynamics of the plume are solved simultaneously using an operator splitting method. The plume model is used to quantify how the in-plume chemical composition is affected in response to various environmental conditions and different engine and/or fuel characteristics. Results demonstrate that an instant dilution model overestimates ozone production and accelerates conversion of nitrogen oxides compared to the plume model. Sensitivities to the NOx emission index have been derived and the dependence of the plume treatment on the background atmosphere mixing ratios, pressure and latitude has been investigated for a future regional scale assessment of the aviation sector. The cumulative impact of successive flights has been estimated. Contrail micro-physical and chemical properties have been computed under different scenarios. This aircraft plume model has been extensively validated and enables an in-depth assessment of the impact of one or multiple flights on local atmospheric conditions.




Modeling Aircraft Contrails and Emission Plumes for Climate Impacts


Book Description

Aircraft emissions lead to contrails and change cloud coverage in the upper troposphere/lower stratosphere, but their quantitative impact on climate is highly uncertain. As environmental policy turns toward regulating anthropogenic climate change components, it will be necessary to improve quantification of the climate impacts of aviation. Toward this end, we present two models of aircraft emissions. The first model is a large eddy simulation (LES) with three-dimensional, eddy-resolving flow physics and ice deposition/sublimation microphysics. Modeled ice properties, cloud optical depths, and contrail width growth rates are consistent with observational field studies. A series of sensitivity cases shows the effect of various parameters over twenty minutes of simulation time. The analysis focuses on properties such as contrail optical depth and cross-sectional width that are relevant to climate impacts. Vertical wind shear is found to have the strongest effect on these properties through the kinematic spreading of the contrail. In cases with no shear, optical depth is most sensitive to aircraft type and ambient humidity. One model parameter, the effective emission index of ice crystals, is also found to affect optical depth. A subset of the LES cases is run for two hours of simulation time to approach the scale of dynamical time steps modeled by global climate simulations. These cases use more realistic ice microphysics, including sedimentation, and forced ambient turbulence, both of which are processes that control contrail development at late times. The second model is a simple, low cost parameterization of aircraft plume dynamics, intended to be used as a subgrid plume model (SPM) within large scale atmospheric simulations. The SPM provides basic plume cross-section time advancement that has been used as a dilution model within a coupled global atmosphere-ocean climate simulation to study the effects of aviation on air quality and climate. Comparison to the twenty-minute and two-hour LES results demonstrates that the SPM captures important plume development characteristics under the effect of vertical shear and atmospheric turbulence.




Plume to Global-scale Atmospheric Impacts of Aviation Emissions


Book Description

High-altitude emissions from current subsonic aviation or from potentially future supersonic aircraft modify the total column ozone, thus leading to either increases in tropospheric ozone or a decrease in stratospheric ozone, with the latter causing larger UV flux at the ground. Both changes affect human health and, in this thesis, I identify a column ozone-neutral altitude for subsonic and supersonic aviation. Adjoint models of CTMs have been developed to quantify receptor-oriented sensitivities of environmental metrics (e.g. population-weighted ozone exposure) to emissions. Adjoint modeling overcomes the numerical cost of source-oriented sensitivity analysis, as performed by forward models. However, adjoint models of atmospheric chemistry have historically been limited to the troposphere. In this thesis, I build upon previous work and extend the GEOS-Chem Adjoint to further include stratospheric processes, and then validate the sensitivities with multi-year scenarios. I then present adjoint-derived sensitivities to identify column ozone-neutral altitudes for subsonic and supersonic aviation, based on their respective emission characteristics. I find that the 12 - 15 km altitude band is approximately column ozone-neutral for aviation emissions. Neglecting the effects of plume-scale processes introduces a positive bias in the column ozone-neutral altitude that varies between 0.3 up to 1 km.




ICAO Journal


Book Description

Official magazine of international civil aviation.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.