Pohl's Introduction to Physics


Book Description

This introductory textbook on experimental physics covers the fields of electrodynamics and optics. It is a new edition of one of the classic textbooks by Robert W. Pohl, written to accompany his famous lecture courses. It served generations of physics and other science majors, not only in his native Germany, and was for many years a standard textbook. Pohl's lucid and memorable style and his consistent use of vivid demonstration experiments made his textbooks unique in their time. This completely revised and updated modern edition attempts to retain his style and clarity in an up-to-date format. The accompanying videos document the original demonstration experiments and add many modern touches, bringing to life the numerous illustrations in the book and providing an instructive and motivating complement to the text. They are linked to the corresponding topics in the text and can be accessed directly online from the e-book version or downloaded to accompany the print version. The clear and structured presentation, always based on experimental demonstrations, gives a lively introduction to the main disciplines in classical physics, here electrodynamics and optics. Although this volume is, like its originals, relatively modest in length, the material it covers often exceeds what is expected of an introductory textbook. Thus the book is suitable not only for undergraduate students and their lecturers, but also for more advanced students and generally interested readers, including teachers at all levels.




Magnetic Sensors and Actuators in Medicine


Book Description

Magnetic Sensors and Actuators in Medicine: Materials, Devices, and Applications provides an overview of the various sensors and actuators, their characteristics, role in the development of medical applications, the medical problems they solve, and future directions. The book brings together recent advances in the physics, chemistry and engineering of magnetic materials related to sensors and actuators that improve their functions in medical applications. The book describes the main applications of magnetic sensors and actuators, starting from the common and emerging magnetic materials, their principles of operation, the medical problems that they are used to address, and the latest achievements in the field. - Reviews a wide range of magnetic sensors and actuators employed in medical applications such as diagnosis, surgery and therapy - Describes magnetic material-based sensors and actuators, including their operation principles, properties and optimization for specific applications - Includes examples of recent advances, such as emerging magnetic materials, magnetic nanowires, nanorods and/or nanotubes




Particles, Fields, Space-Time


Book Description

Particles, Fields, Space-Time: From Thomson's Electron to Higgs' Boson explores the concepts, ideas, and experimental results that brought us from the discovery of the first elementary particle in the end of the 19th century to the completion of the Standard Model of particle physics in the early 21st century. The book concentrates on disruptive events and unexpected results that fundamentally changed our view of particles and how they move through space-time. It separates the mathematical and technical details from the narrative into focus boxes, so that it remains accessible to non-scientists, yet interesting for those with a scientific background who wish to further their understanding. The text presents and explains experiments and their results wherever appropriate. This book will be of interest to a general audience, but also to students studying particle physics, physics teachers at all levels, and scientists with a recreational curiosity towards the subject. Features Short, comprehensive overview concentrating on major breakthroughs, disruptive ideas, and unexpected results Accessible to all interested in subatomic physics with little prior knowledge required Contains the latest developments in this exciting field




Optical Properties and Applications of Semiconductors


Book Description

Semiconductors with optical characteristics have found widespread use in evolving semiconductor photovoltaics, where optical features are important. The industrialization of semiconductors and their allied applications have paved the way for optical measurement techniques to be used in new ways. Due to their unique properties, semiconductors are key components in the daily employed technologies in healthcare, computing, communications, green energy, and a range of other uses. This book examines the fundamental optical properties and applications of semiconductors. It summarizes the information as well as the optical characteristics and applicability of semiconductors through an in-depth review of the literature. Accomplished experts in the field share their knowledge and examine new developments. FEATURES Comprehensive coverage of all types of optical applications using semiconductors Explores relevant composite materials and devices for each application Addresses the optical properties of crystalline and amorphous semiconductors Describes new developments in the field and future potential applications Optical Properties and Applications of Semiconductors is a comprehensive reference and an invaluable resource for engineers, scientists, academics, and industry R&D teams working in applied physics.







Heat Transfer Physics


Book Description

This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum transport, and discussion of graphene and its phonon and electronic conductances. New appendix coverage of Phonon Contributions Seebeck Coefficient and Monte Carlo Methods are also included.




Pohl's Introduction to Physics


Book Description

This classic textbook on experimental physics, written by Robert W. Pohl to accompany his famous lecture courses, served generations of physics and other science majors, not only in his native Germany, and was for many years a standard textbook. Pohl's lucid and memorable style and his consistent use of vivid demonstration experiments made his textbooks unique in their time. This completely revised and updated modern edition retains his style and clarity in an up-to-date format. The accompanying videos document the original demonstrations and add many modern touches, bringing to life the numerous illustrations in the book and providing an instructive and motivating complement to the text. They are linked to the corresponding topics in the text and can be accessed directly online from the e-book version. Volume I covers elementary mechanics, acoustics (vibrations and waves) and thermodynamics.The exercises provide an aid to understanding the material as well as complementary information. This book addresses students of physics and of other natural sciences and engineering, but also teachers and lecturers, who will profit from Pohl's many demonstration experiments, and other interested readers who want to gain an understanding of the fundamentals of physics from an experimental viewpoint.







Lithium-Related Batteries


Book Description

This book serves as a comprehensive treatment of the advanced microscopic properties of lithium- and sodium-based batteries. It focuses on the development of the quasiparticle framework and the successful syntheses of cathode/electrolyte/anode materials in these batteries. FEATURES Highlights lithium-ion and sodium-ion batteries as well as lithium sulfur-, aluminum-, and iron-related batteries Describes advanced battery materials and their fundamental properties Addresses challenges to improving battery performance Develops theoretical predictions and experimental observations under a unified quasiparticle framework Targets core issues such as stability and efficiencies Lithium-Related Batteries: Advances and Challenges will appeal to researchers and advanced students working in battery development, including those in the fields of materials, chemical, and energy engineering.




Transmission Electron Microscopy of Semiconductor Nanostructures


Book Description

This book provides tools well suited for the quantitative investigation of semiconductor electron microscopy. These tools allow for the accurate determination of the composition of ternary semiconductor nanostructures with a spatial resolution at near atomic scales. The book focuses on new methods including strain state analysis as well as evaluation of the composition via the lattice fringe analysis (CELFA) technique. The basics of these procedures as well as their advantages, drawbacks and sources of error are all discussed. The techniques are applied to quantum wells and dots in order to give insight into kinetic growth effects such as segregation and migration. In the first part of the book the fundamentals of transmission electron microscopy are provided. These are needed for an understanding of the digital image analysis techniques described in the second part of the book. There the reader will find information on different methods of composition determination. The third part of the book focuses on applications such as composition determination in InGaAs Stranski--Krastanov quantum dots. Finally it is shown how an improvement in the precision of the composition evaluation can be obtained by combining CELFA with electron holography. This is demonstrated for an AlAs/GaAs superlattice.