Philosophy of Geometry from Riemann to Poincaré


Book Description

Geometry has fascinated philosophers since the days of Thales and Pythagoras. In the 17th and 18th centuries it provided a paradigm of knowledge after which some thinkers tried to pattern their own metaphysical systems. But after the discovery of non-Euclidean geometries in the 19th century, the nature and scope of geometry became a bone of contention. Philosophical concern with geometry increased in the 1920's after Einstein used Riemannian geometry in his theory of gravitation. During the last fifteen or twenty years, renewed interest in the latter theory -prompted by advances in cosmology -has brought geometry once again to the forefront of philosophical discussion. The issues at stake in the current epistemological debate about geometry can only be understood in the light of history, and, in fact, most recent works on the subject include historical material. In this book, I try to give a selective critical survey of modern philosophy of geometry during its seminal period, which can be said to have begun shortly after 1850 with Riemann's generalized conception of space and to achieve some sort of completion at the turn of the century with Hilbert's axiomatics and Poincare's conventionalism. The philosophy of geometry of Einstein and his contemporaries will be the subject of another book. The book is divided into four chapters. Chapter 1 provides back ground information about the history of science and philosophy.




Poincaré's Philosophy


Book Description

Henri Poincare (1854–1912) was one of the greatest mathematicians and philosophers of all time. He founded topology and made important contributions to theoretical physics. Yet despite his numerous achievements Poincare never constructed a systematic philosophy. In this book, Elie Zahar presents Poincare’s work for the first time as a unified system of thought.




Henri Poincaré


Book Description

A comprehensive look at the mathematics, physics, and philosophy of Henri Poincaré Henri Poincaré (1854–1912) was not just one of the most inventive, versatile, and productive mathematicians of all time—he was also a leading physicist who almost won a Nobel Prize for physics and a prominent philosopher of science whose fresh and surprising essays are still in print a century later. The first in-depth and comprehensive look at his many accomplishments, Henri Poincaré explores all the fields that Poincaré touched, the debates sparked by his original investigations, and how his discoveries still contribute to society today. Math historian Jeremy Gray shows that Poincaré's influence was wide-ranging and permanent. His novel interpretation of non-Euclidean geometry challenged contemporary ideas about space, stirred heated discussion, and led to flourishing research. His work in topology began the modern study of the subject, recently highlighted by the successful resolution of the famous Poincaré conjecture. And Poincaré's reformulation of celestial mechanics and discovery of chaotic motion started the modern theory of dynamical systems. In physics, his insights on the Lorentz group preceded Einstein's, and he was the first to indicate that space and time might be fundamentally atomic. Poincaré the public intellectual did not shy away from scientific controversy, and he defended mathematics against the attacks of logicians such as Bertrand Russell, opposed the views of Catholic apologists, and served as an expert witness in probability for the notorious Dreyfus case that polarized France. Richly informed by letters and documents, Henri Poincaré demonstrates how one man's work revolutionized math, science, and the greater world.




Science and Hypothesis


Book Description




The Scientific Legacy of Poincare


Book Description

Henri Poincare (1854-1912) was one of the greatest scientists of his time, perhaps the last one to have mastered and expanded almost all areas in mathematics and theoretical physics. In this book, twenty world experts present one part of Poincare's extraordinary work. Each chapter treats one theme, presenting Poincare's approach, and achievements.




The Three-Body Problem and the Equations of Dynamics


Book Description

Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.




The Value of Science


Book Description

The Value of ScienceLa Valeur de la ScienceHenri Poincar�The Value of Science (French: La Valeur de la Science) is a book by the French mathematician, physicist, and philosopher Henri Poincar�. It was published in 1905. The book deals with questions in the philosophy of science and adds detail to the topics addressed by Poincar�'s previous book, Science and Hypothesis (1902).The search for truth should be the goal of our activities; it is the sole end worthy of them. Doubtless we should first bend our efforts to assuage human suffering, but why? Not to suffer is a negative ideal more surely attained by the annihilation of the world. If we wish more and more to free man from material cares, it is that he may be able to employ the liberty obtained in the study and contemplation of truth.But sometimes truth frightens us. And in fact we know that it is sometimes deceptive, that it is a phantom never showing itself for a moment except to ceaselessly flee, that it must be pursued further and ever further without ever being attained. Yet to work one must stop, as some Greek, Aristotle or another, has said. We also know how cruel the truth often is, and we wonder whether illusion is not more consoling, yea, even more bracing, for illusion it is which gives confidence. When it shall have vanished, will hope remain and shall we have the courage to achieve? Thus would not the horse harnessed to his treadmill refuse to go, were his eyes not bandaged? And then to seek truth it is necessary to be independent, wholly independent. If, on the contrary, we wish to act, to be strong, we should be united. This is why many of us fear truth; we consider it a cause of weakness. Yet truth should not be feared, for it alone is beautiful.




Einstein's Clocks and Poincare's Maps: Empires of Time


Book Description

"In Galison's telling of science, the meters and wires and epoxy and solder come alive as characters, along with physicists, engineers, technicians and others . . . Galison has unearthed fascinating material." ("New York Times").




Conventionalism


Book Description

The daring idea that convention - human decision - lies at the root both of necessary truths and much of empirical science reverberates through twentieth-century philosophy, constituting a revolution comparable to Kant's Copernican revolution. This book provides a comprehensive study of Conventionalism. Drawing a distinction between two conventionalist theses, the under-determination of science by empirical fact, and the linguistic account of necessity, Yemima Ben-Menahem traces the evolution of both ideas to their origins in Poincaré's geometric conventionalism. She argues that the radical extrapolations of Poincaré's ideas by later thinkers, including Wittgenstein, Quine, and Carnap, eventually led to the decline of conventionalism. This book provides a fresh perspective on twentieth-century philosophy. Many of the major themes of contemporary philosophy emerge in this book as arising from engagement with the challenge of conventionalism.




History and Philosophy of Modern Mathematics


Book Description

History and Philosophy of Modern Mathematics was first published in 1988. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. The fourteen essays in this volume build on the pioneering effort of Garrett Birkhoff, professor of mathematics at Harvard University, who in 1974 organized a conference of mathematicians and historians of modern mathematics to examine how the two disciplines approach the history of mathematics. In History and Philosophy of Modern Mathematics, William Aspray and Philip Kitcher bring together distinguished scholars from mathematics, history, and philosophy to assess the current state of the field. Their essays, which grow out of a 1985 conference at the University of Minnesota, develop the basic premise that mathematical thought needs to be studied from an interdisciplinary perspective. The opening essays study issues arising within logic and the foundations of mathematics, a traditional area of interest to historians and philosophers. The second section examines issues in the history of mathematics within the framework of established historical periods and questions. Next come case studies that illustrate the power of an interdisciplinary approach to the study of mathematics. The collection closes with a look at mathematics from a sociohistorical perspective, including the way institutions affect what constitutes mathematical knowledge.