Polarisation: Applications in Remote Sensing


Book Description

This is a monograph concerning the scattering of electromagnetic waves from surfaces to generate information for the purposes of remote sensing. It combines, for the first time, a treatment of two important new ideas, namely information from the orientation or polarisation of the wave and how it can be combined with interferometry.




Polarization Remote Sensing Physics


Book Description

This book elaborates on the physical principles of polarization remote sensing. It explains the reflective characteristics of surface objects and atmosphere separately, including theory, experiment, instrument and application. In addition, it introduces how polarization remote sensing works in advanced research programs as it can be used in aviation, astronomy, disaster risk prevention and navigation fields. This book serves as a fundamental and comprehensive reference for researchers and students.




Polarization Remote Sensing Physics(偏振遥感物理)


Book Description

本书是立志从事光学偏振遥感新领域研究者的入门书,是遥感、地球观测、测绘、国土等领域学者了解偏振遥感全貌的参考书,是为相关领域从业人员借助偏振遥感手段解决其自身面临的相关问题提供了一个新视野、新手段、新途径,可作为从事偏振遥感科研、教学人员了解偏振遥感理论、技术和方法的指南,也可为相关技术研究人员提供有价值的参考。




Polarimetric Detection, Characterization and Remote Sensing


Book Description

As the need for accurate and non-invasive optical characterization and diagnostic techniques is rapidly increasing, it is imperative to find improved ways of extracting the additional information contained within the measured parameters of the scattered light. This is the first specialized monograph on photopolarimetry, a rapidly developing, multidisciplinary topic with numerous military, ecological remote-sensing, astrophysical, biomedical, and technological applications. The main objective is to describe and discuss techniques developed in various disciplines to acquire useful information from the polarization signal of scattered electromagnetic waves. It focuses on the state-of-the-art in polarimetric detection, characterization, and remote sensing, including military and environmental monitoring as well as terrestrial, atmospheric, and biomedical characterization. The book identifies polarimetric techniques that have been especially successful for various applications as well as the future needs of the various research communities. The monograph is intended to facilitate cross-pollination of ideas and thereby improve research efficiency and help advance the field of polarimetry into the future. The book is thoroughly interdisciplinary and contains only invited review chapters written by leading experts in the respective fields. It will be useful to science professionals, engineers, and graduate students working in a broad range of disciplines: optics, electromagnetics, atmospheric radiation and remote sensing, radar meteorology, oceanography, climate research, astrophysics, optical engineering and technology, particle characterization, and biomedical optics.




Polarimetric Synthetic Aperture Radar


Book Description

This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans.




Multi-band Polarization Imaging and Applications


Book Description

This book introduces the optical multi-band polarization imaging theory and the utilization of the multi-band polarimetric information for detecting the camouflage object and the optical hidden marker, and enhancing the visibility in bad weather and water. The book describes systematically and in detail the basic optical polarimetry theory; provides abundant multi-band polarimetric imaging experiment data; and indicates practical evaluation methods for designing the multi-band polarization imager, for analyzing and modeling the object’s multi-band polarization characteristics, and for enhancing the vision performance in scattering media. This book shows the latest research results of multi-band polarimetric vision, especially in camouflage object detection, optical hidden marker detection and multi-band polarimetric imagery fusion. From this book, readers can get a complete understanding about multi-band polarimetric imaging and its application in different vision tasks.




Mathematical and Physical Modelling of Microwave Scattering and Polarimetric Remote Sensing


Book Description

Radar technology is increasingly being used to monitor the environment. This monograph provides a review of polarimetric radar techniques for remote sensing. The first four chapters cover the basics of mathematical, statistical modelling as well as physical modelling based on radiowave scattering theory. The subsequent eight chapters summarize applications of polarimetric radar monitoring for various types of earth environments, including vegetation and oceans. The last two chapters provide a summary of Western as well as former Soviet Union knowledge and the outlook. This monograph is of value to students, scientists and engineers involved in remote sensing development and applications in particular for environmental monitoring.







Recent Remote Sensing Sensor Applications


Book Description

This book provides a comprehensive overview of remote sensing and its various applications. In remote sensing applications, various sensors that begin as both active and passive sensors are used. Active remote sensing transmits electromagnetic radiation that is both emitted and reflected, in contrast to passive remote sensing, which merely measures electromagnetic radiation that is reflected from the target. This book includes nine chapters that examine remote sensing for detecting ice, tracking and monitoring deforestation, identifying crop regions infected with disease, mineral and geological mapping, and much more.




Remote Sensing with Imaging Radar


Book Description

This book is concerned with remote sensing based on the technology of imaging radar. It assumes no prior knowledge of radar on the part of the reader, commencing with a treatment of the essential concepts of microwave imaging and progressing through to the development of multipolarisation and interferometric radar, modes which underpin contemporary applications of the technology. The use of radar for imaging the earth’s surface and its resources is not recent. Aircraft-based microwave systems were operating in the 1960s, ahead of optical systems that image in the visible and infrared regions of the spectrum. Optical remote sensing was given a strong impetus with the launch of the first of the Landsat series of satellites in the mid 1970s. Although the Seasat satellite launched in the same era (1978) carried an imaging radar, it operated only for about 12 months and there were not nearly so many microwave systems as optical platforms in service during the 1980s. As a result, the remote sensing community globally tended to develop strongly around optical imaging until Shuttle missions in the early to mid 1980s and free-flying imaging radar satellites in the early to mid 1990s became available, along with several sophisticated aircraft platforms. Since then, and particularly with the unique capabilities and flexibility of imaging radar, there has been an enormous surge of interest in microwave imaging technology. Unlike optical imaging, understanding the theoretical underpinnings of imaging radar can be challenging, particularly when new to the field.