Polarization Dynamics of Mode-Locked Fiber Lasers


Book Description

This book provides a comprehensive review of the latest research on the science, technology, and applications of mode-locked fiber lasers generating pulse trains with the evolving state of polarization at time scales ranging from a few pulse widths to 10,000 laser cavity round-trip times. It supports readers with a timely source of information on the current novel scientific concepts, and cost-effective schematics, in addition to an overview of the feasible applications. The book aims to demonstrate for the nonlinear science community a newly emerging field of nonlinear science, and so stimulates the development of new theoretical approaches and opens new horizons for the photonics community by pushing boundaries of the existing laser systems towards new applications. The new classes of optical sources and photonic devices explored in this book will be relevant with applications to other fields, including medicine, bio-photonics, metrology, and environmental safety. Key Features • Provides a cutting edge review of the latest emerging science, technology and applications in the field. • Tackles a topic with fast growing interest in USA, Europe and China. • Explores the simple and cheap design and tests of lasers, and outlines the feasible applications.




Polarization Dynamics of Mode-Locked Fiber Lasers


Book Description

This book provides a comprehensive review of the latest research on the science, technology, and applications of mode-locked fiber lasers generating pulse trains with the evolving state of polarization at time scales ranging from a few pulse widths to 10,000 laser cavity round-trip times. It supports readers with a timely source of information on the current novel scientific concepts, and cost-effective schematics, in addition to an overview of the feasible applications. The book aims to demonstrate for the nonlinear science community a newly emerging field of nonlinear science, and so stimulates the development of new theoretical approaches and opens new horizons for the photonics community by pushing boundaries of the existing laser systems towards new applications. The new classes of optical sources and photonic devices explored in this book will be relevant with applications to other fields, including medicine, bio-photonics, metrology, and environmental safety. Key Features • Provides a cutting edge review of the latest emerging science, technology and applications in the field. • Tackles a topic with fast growing interest in USA, Europe and China. • Explores the simple and cheap design and tests of lasers, and outlines the feasible applications.




Current Developments in Optical Fiber Technology


Book Description

This book is a compilation of works presenting recent advances and progress in optical fiber technology related to the next generation optical communication, system and network, sensor, laser, measurement, characterization and devices. It contains five sections including optical fiber communication systems and networks, plastic optical fibers technologies, fiber optic sensors, fiber lasers and fiber measurement techniques and fiber optic devices on silicon chip. Each chapter in this book is a contribution from a group of academicians and scientists from a prominent university or research center, involved in cutting edge research in the field of photonics. This compendium is an invaluable reference for researchers and practitioners working in academic institutions as well as industries.




Exploring the World with the Laser


Book Description

This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hänsch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.




Nonlinear Optical Cavity Dynamics


Book Description

By recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.




Fiber Laser


Book Description

This book is a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students, and other scientists. This book describes the rapidly developing field of fiber laser technology filling the very important role of providing students, researchers, and technology managers with valuable, timely, and unbiased information on the subject. The objective of this book is to highlight recent progress and trends in fiber laser technology covering a wide range of topics, such as self-pulsing phenomena in high-power continuous wave (CW) Yb-doped fiber lasers, Q-switched fiber laser, mode-locked fiber laser using carbon nanotubes (CNT), properties of double-scale pulses in mode-locked fiber laser, Brillouin fiber laser, dual-wave length fiber laser (DWFL) for microwave (MHz) and terahertz (THz) radiation generation, tunable fiber laser based on twin core optical fiber, reflective semiconductor optical amplifier (RSOA)-based fiber laser, dissipative soliton phenomena in fiber lasers, noiselike pulses (NLPs) in Yb-doped fiber laser, ultra fast fiber laser, numerical simulation in Q-switched and mode-locked fiber laser, gain saturation in optical fiber laser amplifiers, heat generation and removal in fiber lasers, and different fiber laser based technologies for material processing. We hope that this book will be useful for students, researchers, and professionals, who work with fiber lasers. This book will also serve as an interesting and valuable reference that will impact, stimulate, and promote further advances in the area of fiber lasers




Ultra-Fast Fiber Lasers


Book Description

Ultrashort pulses in mode-locked lasers are receiving focused attention from researchers looking to apply them in a variety of fields, from optical clock technology to measurements of the fundamental constants of nature and ultrahigh-speed optical communications. Ultrashort pulses are especially important for the next generation of ultrahigh-speed optical systems and networks operating at 100 Gbps per carrier. Ultra Fast Fiber Lasers: Principles and Applications with MATLAB® Models is a self-contained reference for engineers and others in the fields of applied photonics and optical communications. Covering both fundamentals and advanced research, this book includes both theoretical and experimental results. MATLAB files are included to provide a basic grounding in the simulation of the generation of short pulses and the propagation or circulation around nonlinear fiber rings. With its unique and extensive content, this volume— Covers fundamental principles involved in the generation of ultrashort pulses employing fiber ring lasers, particularly those that incorporate active optical modulators of amplitude or phase types Presents experimental techniques for the generation, detection, and characterization of ultrashort pulse sequences derived from several current schemes Describes the multiplication of ultrashort pulse sequences using the Talbot diffraction effects in the time domain via the use of highly dispersive media Discusses developments of multiple short pulses in the form of solitons binding together by phase states Elucidates the generation of short pulse sequences and multiple wavelength channels from a single fiber laser The most practical short pulse sources are always found in the form of guided wave photonic structures. This minimizes problems with alignment and eases coupling into fiber transmission systems. In meeting these requirements, fiber ring lasers operating in active mode serve well as suitable ultrashort pulse sources. It is only a matter of time before scientists building on this research develop the practical and easy-to-use applications that will make ultrahigh-speed optical systems universally available.




Nonlinear Optical Systems


Book Description

Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing is a simplified overview of the evolution of technology associated with nonlinear systems and advanced signal processing. This book's coverage ranges from fundamentals to phenomena to the most cutting-edge aspects of systems for next-generation biomedical monitoring an




Optical Multi-Bound Solitons


Book Description

Optical Multi-Bound Solitons describes the generation and transmission of multi-bound solitons with the potential to form the basis of the temporal coding of optical data packets for next-generation nonlinear optical systems. The book deals with nonlinear systems in terms of their fundamental principles, associated phenomena, and signal processing applications in contemporary optical systems for communications and laser systems, with a touch of mathematical representation of nonlinear equations to offer insight into the nonlinear dynamics at different phases. The text not only delineates the strong background physics of such systems but also: Discusses the phase evolution of the optical carriers under the soliton envelopes for the generation of multi-bound solitons Explains the generation of multi-bound solitons through optical fibers Examines new types of multi-bound solitons in passive and active optical resonators Conducts bi-spectral analyses of multi-bound solitons to identify the phase and power amplitude distribution property of bound solitons Presents experimental techniques for the effective generation of bound solitons Optical Multi-Bound Solitons provides extensive coverage of multi-bound solitons from the dynamics of their formation to their transmission over guided optical media. Appendices are included to supplement a number of essential definitions, mathematical representations, and derivations, making this book an ideal theoretical reference text as well as a practical professional guidebook.




Handbook of Carbon Nanotubes


Book Description

This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.