Polarized Electrons


Book Description

This book deals with the physics of spin-polarized free electrons. Many aspects of this rapidly expanding field have been treated in review articles, but to date a self-contained monograph has not been available. In writing this book, I have tried to oppose the current trend in science that sees specialists writing primarily for like-minded specialists, and even physicists in closely related fields understanding each other less than they are inclined to admit. I have attempted to treat a modern field of physics in a style similar to that of a textbook. The presentation should be intelligible to readers at the graduate level, and while it may demand concentration, I hope it will not require decipher ing. If the reader feels that it occasionally dwells upon rather elementary topics, he should remember that this pedestrian excursion is meant to be reasonably self-contained. It was, for example, necessary to give a simple introduction to the Dirac theory in order to have a basis for the discussion of Mott scattering-one of the most important techniques in polarized electron studies.




Polarized Electrons at Surfaces


Book Description




Polarized Electrons In Surface Physics


Book Description

Contents:Theoretical Foundation:Electronic and Magnetic Structure of Solid Surfaces (A J Freeman, C L Fu, S Ohnishi & M Weinert)Ferromagnetism of Transition Metals at Finite Temperatures (H Capellmann)Critical Behaviour at Surfaces of Ferromagnets (K Binder)Principles and Theory of Electron Scattering and Photoemission (R Feder)Experiments and Results:Sources and Detectors for Polarized Electrons (J Kirschner)Elastic Spin-Polarized Low Energy Electron Diffraction from Non-Magnetic Surfaces (F B Dunning & G K Walters)Elastic Spin-Polarized Low-Energy Electron Scattering from Magnetic Surfaces (U Gradmann & S F Alvarad)Inelastic Electron Scattering by Ferromagnets (J Kirschner)Spin Polarized Secondary Electron Emission from Ferromagnets (M Landolt)Spin Polarized Photoemission by Optical Spin Orientation in Semiconductors (F Meier)Adsorbates (U Heinzmann & G Schonhense)Spin- and Angle-Resolved Photoemission from Ferromagnets (E Kisker)Spin Dependent Inverse Photoemission from Ferromagnets (V Dose & M Glöbl)Photoemission and Bremsstrahlung from Fe and Ni: Theoretical Results and Analysis of Experimental Data (R Clauberg & R Feder)Polarized Electrons in Surface Physics: Outlook (M Campagna) Readership: Graduate students and researchers interested in surface physics.




Spin-Polarized Two-Electron Spectroscopy of Surfaces


Book Description

This book presents developments of techniques for detection and analysis of two electrons resulting from the interaction of a single incident electron with a solid surface. Spin dependence in scattering of spin-polarized electrons from magnetic and non-magnetic surfaces is governed by exchange and spin-orbit effects. The effects of spin and angular electron momentum are shown through symmetry of experimental geometries: (i) normal and off normal electron incidence on a crystal surface, (ii) spin polarization directions within mirror planes of the surface, and (iii) rotation and interchange of detectors with respect to the surface normal. Symmetry considerations establish relationships between the spin asymmetry of two-electron distributions and the spin asymmetry of Spectral Density Function of the sample, hence providing information on the spin-dependent sample electronic structure. Detailed energy and angular distributions of electron pairs carry information on the electron-electron interaction and electron correlation inside the solid. The “exchange – correlation hole” associated with Coulomb and exchange electron correlation in solids can be visualized using spin-polarized two-electron spectroscopy. Also spin entanglement of electron pairs can be probed. A description of correlated electron pairs generation from surfaces using other types of incident particles, such as photons, ions, positrons is also presented.




Surface Microscopy with Low Energy Electrons


Book Description

This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques also include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.




Polarized Electrons


Book Description

The rapid growth of the subject since the first edition ten years ago has made it necessary to rewrite the greater part of the book. Except for the introductory portion and the section on Mott scattering, the book has been completely revised. In Chap. 3, sections on polarization violating reflection symmetry, on resonance scattering, and on inelastic processes have been added. Chapter 4 has been rewritten, taking account of the numerous novel results obtained in exchange scattering. Chapter 5 includes the recent discoveries on photoelectron polarization produced by unpolarized radiation with unpolarized targets and on Auger-electron polarization. In Chap. 6, a further discussion of relativistic polarization phenomena has been added to the book. The immense growth of polarization studies with solids and surfaces required an extension and new presentation of Chap. 7. All but one section of Chap. 8 has been rewritten and a detailed treatment of polarization analysis has been included. Again, a nearly comprehensive treatment has been attempted. Even so, substantial selectivity among the wide range of available material has been essential in order to accomplish a compact presentation. The reference list, selected along the same lines as in the first edition, is meant to lead the reader through the literature giving a guide for finding further references. I want to express my indebtedness to a number of people whose help has been invaluable.




Polarized Electron/Polarized Photon Physics


Book Description

The EPSRC (Engineering and Physical Science Research Committee of the U. K. ) suggested two Workshops (York University, 22-23 September, 1993 and 15-16 April, 1994) for possible development of polarized electron/photon physics as targeted areas of research. The remit of these meetings included identifying research groups and their activities in polarized electron/polarized photon physics, listing relevant existing facilities (particularly electron spin sources and polarimeters), possible joint projects between research groups in the U. K. , recognizing future needs of projects for research of the highest scientific merit and referring to international comparisons of these research activities. Although very diverse but interconnected, the areas of research presented at the Workshops embrace atomic, molecular, surface, and solid state physics. In more detail these areas covered: electron spin correlations and photon polarization correlations in atomic and molecular collisions and photoionization, electron spin effects in scanning tunneling microscopy, surface and interface magnetism from X-ray scattering and polarized Auger electrons (including analysis of domain structures in solids and surfaces), polarized electrons from multiphoton ionization, quasi-atomic effects in solid state physics, dichroism in molecular and surface processes, Faraday rotation and high-field magneto-optics and polarization effects in simultaneous higher order electron-photon excitations. It is obvious from the spectrum of research fields presented at the Workshops that physicists of primarily two communities, namely those studying electron and photon spin interactions with gaseous atomic and molecular targets and those using condensed matter targets for their studies, interacted very closely with each other.




Surface Analysis Methods in Materials Science


Book Description

The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallurgy, materials science and materials engineering; - postgraduate students undertaking research that involves the use of analytical techniques; - groups of scientists and engineers attending training courses and workshops on the application of surface analytical techniques in materials science; - industrial scientists and engineers in research and development seeking a description of available surface analytical techniques and guidance on the most appropriate techniques for particular applications. The contributors mostly come from Australia, with the notable exception of Ray Browning from Stanford University.







Dynamics at Solid State Surfaces and Interfaces, Volume 1


Book Description

This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.