Plant-Animal Interactions


Book Description

Novel Aspects of Insect-Plant Interactions Edited by Pedro Barbosa and Deborah K. Letourneau Focusing on three trophic levels, this study widens the current understanding of the ecological interactions between plants, herbivores, and their parasitoids and predators. Emphasized are the mediating effects of plant-derived allelochemicals on those interactions. The text also covers microorganisms as mediators of intertrophic and intratrophic interactions; theory and mechanisms: plant effects via allelochemicals on the third trophic level; and key roles of plant allelochemicals in survival strategies of herbivores. 1988 (0 471-83276-6) 362 pp. Plant Stress-Insect Interactions Edited by E. A. Heinrichs "This is a far-reaching, seminal book that summarizes our understanding of the complexity of real-world ecology." —Choice This first major overview of the various abiotic and biotic stresses on plants outlines in detail what impact their responses have on their suitability as insect hosts. The effects of abiotic stress are catalogued in up-to-date research from leading specialists. The implications of plant stress on global food production in this era of diminishing croplands and rising populations is described, as well as avenues for the development of tolerant crop cultivars. 1988 (0 471-82648-0) 492 pp. Plant Resistance to Insects A Fundamental Approach C. Michael Smith This comprehensive text—developed out of the author’s vast field and academic experience—describes how biological and agricultural scientists identify and develop plant materials resistant to insects. Covers terminology and categories of resistance; investigative techniques for studying plant resistance; and crop management systems that use insect-resistant cultivars. Supplemented with tables detailing types and numbers of insect-resistant plant cultivars in the U.S. and formulae on quantifying plant tolerance of insects. 1989 (0 471-84938-3) 286 pp.




The Biogeography of Host-Parasite Interactions


Book Description

This edited volume demonstrates how the latest developments in biogeography (for example in phylogenetics, macroecology, and geographic information systems) can be applied to studies in the evolutionary ecology of host-parasite interactions in order to integrate spatial patterns with ecological theory.




Symbiosis as a Source of Evolutionary Innovation


Book Description

These original contributions by symbiosis biologists and evolutionary theorists address the adequacy of the prevailing neo-Darwinian concept of evolution in the light of growing evidence that hereditary symbiosis, supplemented by the gradual accumulation of heritable mutation, results in the origin of new species and morphological novelty.A departure from mainstream biology, the idea of symbiosis--as in the genetic and metabolic interactions of the bacterial communities that became the earliest eukaryotes and eventually evolved into plants and animals--has attracted the attention of a growing number of scientists.These original contributions by symbiosis biologists and evolutionary theorists address the adequacy of the prevailing neo-Darwinian concept of evolution in the light of growing evidence that hereditary symbiosis, supplemented by the gradual accumulation of heritable mutation, results in the origin of new species and morphological novelty. They include reports of current research on the evolutionary consequences of symbiosis, the protracted physical association between organisms of different species. Among the issues considered are individuality and evolution, microbial symbioses, animal-bacterial symbioses, and the importance of symbiosis in cell evolution, ecology, and morphogenesis. Lynn Margulis, Distinguished Professor of Botany at the University of Massachusetts at Amherst, is the modern originator of the symbiotic theory of cell evolution. Once considered heresy, her ideas are now part of the microbiological revolution. ContributorsPeter Atsatt, Richard C. Back, David Bermudes, Paola Bonfante-Fasolo, René Fester, Lynda J. Goff, Anne-Marie Grenier, Ricardo Guerrero, Robert H. Haynes, Rosmarie Honegger, Gregory Hinkle, Kwang W. Jeon, Bryce Kendrick, Richard Law, David Lewis, Lynn Margulis, John Maynard Smith, Margaret J. McFall-Ngai, Paul Nardon, Kenneth H. Nealson, Kris Pirozynski, Peter W. Price, Mary Beth Saffo, Jan Sapp, Silvano Scannerini, Werner Schwemmler, Sorin Sonea, Toomas H. Tiivel, Robert K. Trench, Russell Vetter




Conservation Biology for All


Book Description

Conservation Biology for All provides cutting-edge but basic conservation science to a global readership. A series of authoritative chapters have been written by the top names in conservation biology with the principal aim of disseminating cutting-edge conservation knowledge as widely as possible. Important topics such as balancing conversion and human needs, climate change, conservation planning, designing and analyzing conservation research, ecosystem services, endangered species management, extinctions, fire, habitat loss, and invasive species are covered. Numerous textboxes describing additional relevant material or case studies are also included. The global biodiversity crisis is now unstoppable; what can be saved in the developing world will require an educated constituency in both the developing and developed world. Habitat loss is particularly acute in developing countries, which is of special concern because it tends to be these locations where the greatest species diversity and richest centres of endemism are to be found. Sadly, developing world conservation scientists have found it difficult to access an authoritative textbook, which is particularly ironic since it is these countries where the potential benefits of knowledge application are greatest. There is now an urgent need to educate the next generation of scientists in developing countries, so that they are in a better position to protect their natural resources.




The Social Biology of Microbial Communities


Book Description

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.







The Theoretical Biologist's Toolbox


Book Description

Mathematical modelling is widely used in ecology and evolutionary biology and it is a topic that many biologists find difficult to grasp. In this new textbook Marc Mangel provides a no-nonsense introduction to the skills needed to understand the principles of theoretical and mathematical biology. Fundamental theories and applications are introduced using numerous examples from current biological research, complete with illustrations to highlight key points. Exercises are also included throughout the text to show how theory can be applied and to test knowledge gained so far. Suitable for advanced undergraduate courses in theoretical and mathematical biology, this book forms an essential resource for anyone wanting to gain an understanding of theoretical ecology and evolution.




Insect Life Cycles


Book Description

No International Congress of Entomology would now be complete without a symposium on insect life-cycles. The latest Congress, held at Vancouver, BC (Canada), in July 1988, was no exception, with a symposium on the genetics, evolution, and coordination of insect life cycles organized by Bill Bradshaw and Valerie Brown. The present volume arose from papers contributed by most of the speakers at the symposium, together with papers from other invited authors. In editing the book, I have been assisted greatly by the other authors, particularly Bill Bradshaw, Val Brown and Fritz Taylor. All contributors agreed to referee two other chapters, a system that worked efficiently and effectively: I thank all authors for performing this task in the face of other demands on their time. I would also like to thank Philip Corbet, John Greenslade, Bryan Clarke, and Gillian Thompson of Springer for their help. Nottingham Francis Gilbert January 1990 Contents List of Contributors ....................................................... xiii SECTION I. Genetics of Life-Cycle Traits Introduction William E. Bradshaw ................................................. 3 1 Understanding the Evolution of Insect Life-Cycles: The Role of Genetic Analysis.




100 Plants to Feed the Bees


Book Description

The international bee crisis is threatening our global food supply, but this user-friendly field guide shows what you can do to help protect our pollinators. The Xerces Society for Invertebrate Conservation offers browsable profiles of 100 common flowers, herbs, shrubs, and trees that support bees, butterflies, moths, and hummingbirds. The recommendations are simple: pick the right plants for pollinators, protect them from pesticides, and provide abundant blooms throughout the growing season by mixing perennials with herbs and annuals! 100 Plants to Feed the Bees will empower homeowners, landscapers, apartment dwellers — anyone with a scrap of yard or a window box — to protect our pollinators.




Foundations of Restoration Ecology


Book Description

"Society for Ecological Restoration"--Cover.