Poly(lactic acid) Science and Technology


Book Description

A comprehensive overview of the synthesis, characterisation, properties and applications of poly(lactic acid) science and technology covering scientific, ecological, social and economic issues.




Polylactic Acid


Book Description

Annotation An essential reference for engineers, scientists and product designers that already work with polymers and plastics who wish to convert to a sustainable plastic. It covers the properties, synthesis and polymerisation of PLA and processing techniques involved in fabricating parts from this polymer.




Biodegradable Poly (Lactic Acid)


Book Description

"Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications" describes the preparation, modification, processing, and the research and applications of biodegradable poly (lactic acid), which belong to the biomedical and environment-friendly materials. Highly illustrated, the book introduces systematically the synthesis, physical and chemical modifications, and the latest developments of research and applications of poly (lactic acid) in biomedical materials. The book is intended for researchers and graduate students in the fields of materials science and engineering, polymer science and engineering, biomedicine, chemistry, environmental sciences, textile science and engineering, package materials, and so on. Dr. Jie Ren is a professor at the Institute of Nano and Bio-Polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai, China.




Polylactic Acid


Book Description

This book describes the synthesis, properties and applications of PLA through fourteen original chapters that will guide the reader through a fascinating journey into the world of PLA, providing interesting insights for those who intend to use this polymer for innovative applications, or simply those who want learn more about this very important biodegradable and bio-based plastic. PLA biodegradability introduces this polymer in a world of eco-friendly and human-friendly applications in several technological fields. In short, this book will appeal to all the readers who not only want to have a reference book of consolidated notions on PLA, but also, and especially, to those who want to discover new potentials and new application fields of this unique biodegradable polymer.




Poly(lactic acid)


Book Description

This book describes the synthesis, properties, and processing methods of poly(lactic acid) (PLA), an important family of degradable plastics. As the need for environmentally-friendly packaging materials increases, consumers and companies are in search for new materials that are largely produced from renewable resources, and are recyclable. To that end, an overall theme of the book is the biodegradability, recycling, and sustainability benefits of PLA. The chapters, from a base of international expert contributors, describe specific processing methods, spectroscopy techniques for PLA analysis, and and applications in medical items, packaging, and environmental use.




Bio-Based Plastics


Book Description

The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs




Sustainable Food Packaging Technology


Book Description

Towards more sustainable packaging with biodegradable materials! The combination of the continuously increasing food packaging waste with the non-biodegradable nature of the plastic materials that have a big slice of the packaging market makes it necessary to move towards sustainable packaging for the benefit of the environment and human health. Sustainable packaging is the type of packaging that can provide to food the necessary protection conditions, but at the same type is biodegradable and can be disposed as organic waste to the landfills in order to biodegrade through a natural procedure. In this way, sustainable packaging becomes part of the circular economy. ?Sustainable Food Packaging Technology? deals with packaging solutions that use engineered biopolymers or biocomposites that have suitable physicochemical properties for food contact and protection and originate both from renewable or non-renewable resources, but in both cases are compostable or edible. Modified paper and cardboard with increased protective properties towards food while keeping their compostability are presented as well. The book also covers natural components that can make the packaging functional, e.g., by providing active protection to the food indicating food spoilage. * Addresses urgent problems: food packaging creates a lot of hard-to-recycle waste - this book puts forward more sustainable solutions using biodegradable materials * State-of-the-art: ?Sustainable Food Packaging Technology? provides knowledge on new developments in functional packaging * From lab to large-scale applications: expert authors report on the technology aspects of sustainable packaging




Solid State Polymerization


Book Description

The most current guide to solid state polymerization Solid State Polymerization (SSP)is an indispensable tool in the design, manufacture, and study of polymers, plastics, and fibers. SSP presents significant advantages over other polymerization techniques due to low operating temperatures, inexpensive equipment, and simple and environmentally sound procedures. Combining fundamentals of polymer science, chemistry, physical chemistry, and engineering, SSP also offers many research applications for a wide range of students and investigators. Gathering and filtering the latest literature on SSP, Solid Solid State Polymerization offers a unique, one-stop resource on this important process. With chapters contributed by leaders in the field, this text summarizes SSP, and provides essential coverage that includes: An introduction to SSP, with chemical and physical steps, apparatus, advantages, and parameters SSP physical chemistry and mechanisms Kinetic aspects of polyesters and polyamides SSP Catalysis in SSP processes Application of SSP under high pressure conditions in the laboratory Engineering aspects regarding process modeling and industrial application Recent developments and future possibilities Solid State Polymerization provides the most up-to-date coverage of this constantly developing field to academic and industry professionals, as well as graduate and postgraduate-level students in chemical engineering, materials science and engineering, polymer chemistry, polymer processing and polymer engineering.




Bio-Based Packaging


Book Description

Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs




Biopolymers from Renewable Resources


Book Description

Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products.