Polyelectrolytes and their Applications


Book Description

Polyelectrolytes and their Applications is the second volume in the series 'Charged and Reactive Polymers'. The important areas of polyelectrolyte applications, i.e., biomedicine, water purification, petroleum recovery and drag reduction, are pre sented along with discussions of the fundamental principles of polyelectrolyte chem istry and physics. This book should be of interest to scientists such as physicians, biochemists, polymer chemists and chemical engineers involved in applications of these materials. The first part of the book is devoted to the basic properties of polyelectrolytes in general, namely to the factors influencing the chain conformation of charged polymers in solution and to their counterion selectivity. It also contains methods of synthesis and new concepts of charge stabilized polymer colloids and of polyelectrolyte ca talysis. The second part describes recent information on the properties and biological effects of already well-known natural polyelectrolytes such as heparin and DNA and recently developed polymers such as pyran and polyionenes. The effects of poly anions and polycations on normal and transformed cells as well as on acetylcholine receptors follow. This part is of particular interest to scientists involved in biological research.




Polyelectrolytes and Nanoparticles


Book Description

This lab manual guides chemists through demonstrations of synergistic effects between polyelectrolytes and nanoparticles. After a short introduction into the field of polyelectrolytes and polyelectrolyte characterization, the book discusses the role of polyelectrolytes in the process of nanoparticle formation. The book also explains methods for characterization of the polyelectrolyte-modified nanoparticles.




Viscosimetry of Polymers and Polyelectrolytes


Book Description

This laboratory handbook offers clear guidelines and tips for the practical everyday application of viscosimetry, as well as supplying a comprehensive companion for the interpretation of viscosimetric data from simple to complex polymer solutions.







Applications of Ionic Liquids in Polymer Science and Technology


Book Description

This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.




Chemical Enhanced Oil Recovery


Book Description

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).




Multilayer Thin Films


Book Description

This second, comprehensive edition of the pioneering book in this fi eld has been completely revised and extended, now stretching to two volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin fi lms, covering organic, inorganic, colloidal, macromolecular, and biological components, as well as the assembly of nanoscale fi lms derived from them on surfaces. These two volumes are essential for anyone working in the field, as well as scientists and researchers active in materials development, who needs the key knowledge provided herein for linking the field of molecular self-assembly with the bio- and materials sciences.




Biopolymer Electrolytes


Book Description

Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage provides the core fundamentals and applications for polyelectrolytes and their properties with a focus on biopolymer electrolytes. Increasing global energy and environmental challenges demand clean and sustainable energy sources to support the modern society. One of the feasible technologies is to use green energy and green materials in devices. Biopolymer electrolytes are one such green material and, hence, have enormous application potential in devices such as electrochemical cells and fuel cells. - Features a stable of case studies throughout the book that underscore key concepts and applications - Provides the core fundamentals and applications for polyelectrolytes and their properties - Weaves the subject of biopolymer electrolytes across a broad range of disciplines, including chemistry, chemical engineering, materials science, environmental science, and pharmaceutical science




Ionic Interactions in Natural and Synthetic Macromolecules


Book Description

This book is a comprehensive study of the subject of ionic interactions in macromolecules. The first parts of the book review and analyze the conventional treatments of fixed charges (e.g. in polyelectrolytes and polyampholytes), including screening and condensation by mobile ions. The interaction of ions with less polar sites on the macromolecule (e.g. amide bonds), and the origin of the lyotropic effects (focusing on binding versus condensation) will also be extensively addressed. The book also explores complex micellar organizations involving charged macromolecules (e.g. DNA) and low-molecular-weight ampholytes and strong protein associations. The resulting structures are relevant to a variety of functional biological systems and synthetic analogs. The contribution of electrostatic and hydrophobic interaction to the stability of proteins and other supramolecular structures will also be analyzed. There are chapters on applications such as deionization and cosmetic formulation. This 21-chapter book is divided into three sections: Fundamentals Mixed Interactions Functions and Applications