Fast Ion Transport in Solids


Book Description

The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.




Ion-Containing Polymers


Book Description

Ion-Containing Polymers: Physical Properties and Structure is Volume 2 of the series Polymer Physics. This book aims to fill in the gap in literature regarding the physical aspects of ion-containing polymers. A total of five chapters comprise this book. The Introduction (Chapter 1) generally deals with the application of ion-containing polymers, general classification, and the available works regarding the subject. Chapter 2 establishes the concepts of supermolecular structure and glass transitions in terms of the effects of ionic forces in polymers. These chapters provide the context in the discussion of viscoelastic properties of homopolymers and copolymers in Chapters 3 and 4. Finally, Chapter 5 tackles the configuration-dependent properties of ion-containing polymers. This volume will be of particular help to students in the field of physics and chemistry.




Modeling Electrochemical Energy Storage at the Atomic Scale


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters “Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions” and “Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review” are available open access under a CC BY 4.0 License via link.springer.com.




Materials for Sustainable Energy


Book Description

The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.




Polymerized Ionic Liquids


Book Description

The series covers the fundamentals and applications of different smart material systems from renowned international experts.







Functional Materials For Next-generation Rechargeable Batteries


Book Description

Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.




Combinatorial Methods for Chemical and Biological Sensors


Book Description

Chemical sensors are in high demand for applications as varied as water pollution detection, medical diagnostics, and battlefield air analysis. Designing the next generation of sensors requires an interdisciplinary approach. The book provides a critical analysis of new opportunities in sensor materials research that have been opened up with the use of combinatorial and high-throughput technologies, with emphasis on experimental techniques. For a view of component selection with a more computational perspective, readers may refer to the complementary volume of Integrated Analytical Systems edited by M. Ryan et al., entitled “Computational Methods for Sensor Material Selection”.




Informatics for Materials Science and Engineering


Book Description

Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. - Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs - Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets - Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems




Ultrathin Oxide Layers for Solar and Electrocatalytic Systems


Book Description

Ultrathin metal oxide layers have emerged in recent years as a powerful approach for substantially enhancing the performance of photo, electro, or thermal catalytic systems for energy, in some cases even enabling the use of highly attractive materials previously found unsuitable. This development is due to the confluence of new synthetic preparation methods for ultrathin oxide layers and a more advanced understanding of interfacial phenomena on the nano and atomic scale. This book brings together the fundamentals and applications of ultrathin oxide layers while highlighting connections and future opportunities with the intent of accelerating the use of these materials and techniques for new and emerging applications of catalysis for energy. It comprehensively covers the state-of-the-art synthetic methods of ultrathin oxide layers, their structural and functional characterization, and the broad range of applications in the field of catalysis for energy. Edited by leaders in the field, and with contributions from global experts, this title will be of interest to graduate students and researchers across materials science and chemistry who are interested in ultrathin oxide layers and their applications in solar energy conversion, renewable energy, photocatalysis, electrocatalysis and protective coatings.