Polymer-Layered Silicate and Silica Nanocomposites


Book Description

Polymer-Layered Silicate and Silica Nanocomposites includes advanced materials and nanocomposites based on silica and layered silicates obtained from resources in China. Using nanotechnology, these inorganic materials can be filled, in-situ polymerised and combined with polymers with nanoscale dispersions. In this book, many practical examples are presented to show how to prepare the nanocomposites. Several kinds of polymer (PET,PBT,PE,PP,etc.)-layered silicate and silica nanocomposites are prepared and investigated based on our research works, inventions and applications. They are prepared and modified aiming at their applications to such fields as, functional films, barrier materials, coatings, and engineering plastics. Their structure-property relationship, especially the nano effects from them are investigated under different techniques to show how the critical load of the inorganic phase has the effect on the final properties of the nanocomposite materials. Obviously, this new generation of materials has revolutionary effects on the traditional materials or industry as petroleum. Some of the prospects of them are thus included. - Focus on the inorganic phase, which is of wide practical and industrial significance - Dealing with many first report of the nanoeffect, nanostructure and its functional properties - Especially, it covers the particle assembly and self-assemble by interaction with polymer matrix




Polymer/layered Silicate Nanocomposites


Book Description

The review sets out to highlight the major developments in this field over the last decade. The different techniques used to prepare PLS nanocomposites are covered. The physicochemical characterisation of PLS nanocomposites and the improved materials properties that those materials can display are discussed. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database provides useful references for further reading.




Synthesis Techniques for Polymer Nanocomposites


Book Description

The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfield of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. Summarizing all the most important synthesis techniques used in the lab as well as in industry, this book is comprehensive in its coverage from chemical, physical and mechanical viewpoints. This book helps readers to choose the correct synthesis route, such as suspension and miniemulsion polymerization, living polymerization, sonication, mechanical methods or the use of radiation, and so achieve the desired composite properties.




Eco-friendly Polymer Nanocomposites


Book Description

This book contains precisely referenced chapters, emphasizing environment-friendly polymer nanocomposites with basic fundamentals, practicality and alternatives to traditional nanocomposites through detailed reviews of different environmental friendly materials procured from different resources, their synthesis and applications using alternative green approaches. The book aims at explaining basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry along with practical applications which present a future direction in the biomedical, pharmaceutical and automotive industry. The book attempts to present emerging economic and environmentally friendly polymer nanocomposites that are free from side effects studied in the traditional nanocomposites. This book is the outcome of contributions by many experts in the field from different disciplines, with various backgrounds and expertises. This book will appeal to researchers as well as students from different disciplines. The content includes industrial applications and will fill the gap between the research works in laboratory to practical applications in related industries.




Polymer-Clay Nanocomposites


Book Description

Polymer-clay nanocomposites are formed through the union of two very different materials with organic and mineral pedigrees. The hybrid compositions, however, exhibit large increases in tensile strength, modulus, and heat distortion temperature as compared with the pristine polymer. The composites also have lower water sensitivity, reduced permeability to gases, and a similar thermal coefficient of expansion. All of these property improvements can be realized without a loss of clarity in the polymer. Further, it has been found that nanocomposites impart a level of flame retardance and UV resistance not present in the pure polymer. These improvements in performance properties at relatively low clay loading (typically 2 -10wt %) have stimulated intensive research in both industry and academia over the past decade. Polymer-Clay Nanocomposites presents the first comprehensive overview of the state of the art of these materials since they were first reported a decade ago. Covering both the theory and practical applications, this volume in the 'Wiley Series in Polymer Science' covers the key aspects of these important materials including: * Polymer-clay intercalates * The preparation and general properties of special practical and commercial significance (including strength, stiffness, toughness, permeability, fire retardation and chemical stability) * The elucidation of the structural and rheological factors influencing performance and processing properties Polymer-Clay Nanocomposites is an indispensable text for polymer scientists, composites formulators, materials engineers, resin producers, filters and additive producers as well as university lecturers, and organic and inorganic chemists working in this important and fascinating area.




Polymers in Confined Environments


Book Description

The rapidly-developing field of confined polymers is reviewed in this volume. Special emphasis is given to polymer aspects of this interdisciplinary problem. Taken together, the contributions offer ample evidence of how the field of polymer science continues to evolve with the passage of time. The topics revolve around the tendency of surfaces to impede chain relaxation and to stimulate new sorts of chain organization. These have been implicated in a variety of spectacular phenomena. Here is a listing of authors and affiliations: K. Binder (Johannes Gutenberg-Universität Mainz, Germany); P.-G. de Gennes (College de France, France); E.P. Giannelis, R. Krishnamoorti, and E. Manias (Cornell University and University of Houston, USA); G.S. Grest (Exxon Research and Engineering Co., USA); L. Leger, E. Raphael, and H. Hervet (College de France, France); S.-Q. Wang (Case Western Reserve University, USA).




Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials


Book Description

"This reference of contributed chapters seeks to address not only how nanomaterials are created, used, or characterized, but also to apply this knowledge to the multidimensional industries, fields, and applications of nanomaterials and nanoscience by including topics such as both natural and manmade nanomaterials; the size, shape, reactivity, and other essential characteristics of nanomaterials; challenges and potential effects of using nanomaterials; and the advantages of nanomaterials with multidisciplinary uses"--




Polymer Nanocomposites


Book Description

This highlights ongoing research efforts on different aspects of polymer nanocomposites and explores their potentials to exhibit multi-functional properties. In this context, it addresses both fundamental and advanced concepts, while delineating the parameters and mechanisms responsible for these potentials. Aspects considered include embrittlement/toughness; wear/scratch behaviour; thermal stability and flame retardancy; barrier, electrical and thermal conductivity; and optical and magnetic properties. Further, the book was written as a coherent unit rather than a collection of chapters on different topics. As such, the results, analyses and discussions presented herein provide a guide for the development of a new class of multi-functional nanocomposites. Offering an invaluable resource for materials researchers and postgraduate students in the polymer composites field, they will also greatly benefit materials




Clay-Polymer Nanocomposites


Book Description

Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. - The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications - Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction - Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more




Inorganic Polymeric Nanocomposites and Membranes


Book Description

This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com