Polymer Melt Processing


Book Description

Most of the shaping in the manufacture of polymeric objects is carried out in the melt state, as it is a substantial part of the physical property development. Melt processing involves an interplay between fluid mechanics and heat transfer in rheologically complex liquids, and taken as a whole it is a nice example of the importance of coupled transport processes. This book is on the underlying foundations of polymer melt processing, which can be derived from relatively straightforward ideas in fluid mechanics and heat transfer; the level is that of an advanced undergraduate or beginning graduate course, and the material can serve as the text for a course in polymer processing or for a second course in transport processes.




Polymer Melt Rheology


Book Description

This book explores the ways in which melt flow behaviour can be exploited by the plastics engineer and technician for increased efficiency of processing operation, control of end product properties and selection and development of polymers for specific purposes. (reissued with minor corrections 1994)




Polymer Melt Fracture


Book Description

The continually growing plastics market consists of more than 250 million tons of product annually, making the recurring problem of polymer melt fracture an acute issue in the extrusion of these materials. Presenting a pictorial library of the different forms of melt fracture and real industrial extrusion melt fracture phenomena, Polymer Melt Fract




Melt Rheology and Its Role in Plastics Processing


Book Description

This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in It includes scientists and engineers whose work in the nature. plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose.




Thermoplastic Melt Rheology and Processing


Book Description

Presents rheological data on a number of polymers, making use of the master curve approach to determine unified curves for each generic type of polymer. The text offers a step-by-step procedure for developing a speadsheet computer program to obtain accurate thermoplastic rheograms at any tempertature without using sophisticated rheometres. It inclu




Polymer Processing Instabilities


Book Description

Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase product




Polymer Melt Processing


Book Description

Most of the shaping in the manufacture of polymeric objects is carried out in the melt state, as it is a substantial part of the physical property development. Melt processing involves an interplay between fluid mechanics and heat transfer in rheologically complex liquids, and taken as a whole it is a nice example of the importance of coupled transport processes. This book is on the underlying foundations of polymer melt processing, which can be derived from relatively straightforward ideas in fluid mechanics and heat transfer; the level is that of an advanced undergraduate or beginning graduate course, and the material can serve as the text for a course in polymer processing or for a second course in transport processes.




Polymer Processing


Book Description

Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal Rheology of polymers containing fibers Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.




Crystallization Modalities in Polymer Melt Processing


Book Description

Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.




Rheology for Polymer Melt Processing


Book Description

This book presents the main results obtained by different laboratories involved in the research group Rheology for polymer melt processing which is associated with French universities, schools of engineering, and the CNRS (Centre National de la Recherche Scientifique - France). The group comprises some 15 research laboratories of varied disciplines (chemistry, physics, material sciences, mechanics, mathematics), but with a common challenge viz. to enhance the understanding of the relationships between macromolecular species, their rheology and their processing. Some crucial issues of polymer science have been addressed: correlation of viscoelastic macroscopic bulk property measurements and models, slip at the wall, extrusion defects, correlation between numerical flow simulations and experiments. Features of the book: • The book is unique in that it allows one to grasp the key issues in polymer rheology and processing at once through a series of detailed state-of-the-art contributions, which were previously scattered throughout the literature. • Each paper was reviewed by experts and the book editors and some coordination was established in order to achieve a readable and easy access style. • Papers have been grouped in sections covering successively: Molecular dynamics, Constitutive equations and numerical modelling, Simple and complex flows. • Each paper can be read independently. Since the book is intended as an introduction to the main topics in polymer processing, it will be of interest to graduate students as well as to scientists in academic and industrial laboratories.