Polymer Membranes in Biotechnology


Book Description

Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed. --




Polymer Membranes


Book Description




Polymer Membranes in Biotechnology


Book Description

Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed. --




Surface Engineering of Polymer Membranes


Book Description

Surface Engineering of Polymer Membranes covers the processes that modify membrane surfaces to improve their in-service performance, meaning, to confer surface properties which are different from the bulk properties. Purposes may be to minimize fouling, modulate hydrophilicity/ hydrophobicity, enhance biocompatibility, create diffusion barriers, provide functionalities, mimic biomembranes, fabricate nanostructures, etc. First, the basics of surface engineering of polymer membranes are covered. Then topics such as surface modification by graft polymerization and macromolecule immobilization, biomimetic surfaces, enzyme immobilization, molecular recognition, and nanostructured surfaces are discussed. This book provides a unique synthesis of the knowledge of the role of surface chemistry and physics in membrane science. Dr. Zhikang Xu of the Institute of Polymer Science of Zhejiang University has eight Chinese patents and in 2006 was honored as a Distinguished Young Scholar by the National Natural Science Foundation of China (NNSFC).




Membrane Systems


Book Description




Membrane Processes in Separation and Purification


Book Description

The chapters of this book are based upon lectures presented at the NATO Advanced Study Institute on Membrane Processes in Separation and Purification (March 21 - April 2, 1993, Curia, Portugal), organized as a successor and update to a similar Institute that took place 10 years ago (p.M.Bungay, H.K. Lonsdale, M.N. de Pinho (Eds.): Synthetic Membranes: Science, Engineering and Applications, NATO ASI Series, Reidel, Dordrecht, 1986). The decade between the two NATO Institutes witnesses the transition from individually researched membrane processes to an applied and established membrane separation technology, as is reflected by the contents of the corresponding proceeding volumes. By and large, the first volume presents itself as a textbook on membrane processes, still valid, while the present volume focuses on areas of separation need as amenable to membrane processing: Biotechnology and Environmental Technology. Accordingly, the contributions to this volume are grouped into "Membranes in Biotechnology" (11 papers), "Membranes in Environmental Technology" (6 papers), and "New Concepts" (4 papers). This is followed by one contribution each on "Energy Requirements" and "Education", i.e., membrane processes within an academic curriculum. The book thus amounts to a state of the art of applied membrane processing and may well augment the more fundamental approach of its predecessor.




Biocatalytic Membrane Reactors


Book Description

This research level reference book has been co-written by Enrico Drioli, perhaps one of the world's best known researchers into membrane technology. The application of membrane technology to chemical transformation and molecular separation are beginning to be exploited in the pharmaceutical science and biotechnology industries, but there is a need for researchers and students to have up-to-date literature - and this book provides it. The book will be of interest to students of chemistry, chemical engineering, pharmacy and biotechnology.




Progress in Membrane Biotechnology


Book Description

It is well known that basic science can trigger an invention of considerable technological and commercial importance. Indeed basic science and invention are often inextricably linked, each being able to catalyse the other. To engender such developments it is important that there should be good communication between the scientist and the technologist. The field of membrane biotechnology is a growing field where such communication is increasingly taking place and where new inventions are occurring. This book provides an overview of this developing field. It contains chapters by scientist and technologists working in the field of Membrane Biotechnology. The chapters cover the latest advances in basic science as well as some recent technological applications. The basic topics include the application of dynamic X-ray diffraction to lipid water systems, FTIR spectroscopy applied to membrane proteins, fluorescent analogues of phosphoinositides, studies of platelet activating factor, antibody binding to model membranes and phospholipase C induced fusion. The technological topics described include the development of new haemocompatible materials based upon biomembrane mimicry, new lung surfactant materials, drug delivery systems including liposomes and the development of new biosensors including Langmuir Blodgett films. The meeting showed that there are many other useful applications in the pipeline. The potential for new polymeric drug delivery systems, of ion selective systems based on the knowledge of ion-channel protein structures, of new plastics for cell growth and cellular engineering for artificial organs. These are among the interesting developments that are emerging in this field.




Handbook of Membrane Separations


Book Description

The Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Second Edition provides detailed information on membrane separation technologies from an international team of experts. The handbook fills an important gap in the current literature by providing a comprehensive discussion of membrane application




Integration of Membrane Processes into Bioconversions


Book Description

Proceedings of the European Membrane Society XVI Annual Summer School on Integration of Membrane Processes into Bioconversions, held August 22-27, 1999, in Veszprém, Hungary. The purpose of this book is to give an overview of the current situation of membrane separation processes in the field of bioengineering and also to describe how their joint application possibilities can be used in both laboratory and industrial scale applications. In commercial applications, focus is centered on the fields of food industry, chemical/fine chemical industry, and environmental protection. Most of the European experts in the interdisciplinary fields of membrane processes and bioconversions have contributed to the chapters in this work, making it the most up-to-date volume currently available.