Polymer Sequence Determination


Book Description

Polymer Sequence Determination: Carbon-13 NMR Method covers the principles, practice, and application of 13C NMR to polymer structure determination. This book is divided into six chapters that highlight spectral interpretations, applications, and experimental considerations. Chapter 1 examines the polymer structure, with special emphasis on those structural features delineated by 13C NMR, along with the assignment techniques used during 13C NMR interpretations of polymer spectra. Chapters 2 and 3 present the methods for measuring sequence distributions and number-average sequence lengths for configurational sequences in vinyl homopolymers and for the comonomer distribution in copolymers and terpolymers. Chapter 4 discusses the statistical approaches to polymer characterization, while Chapter 5 contains practical experimental considerations when designing an NMR experiment to obtain quantitative structural information. Chapter 6 reviews 13C NMR studies for various vinyl homopolymers and copolymers. This book will be of great value to polymer scientists, NMR spectroscopists, and researchers.




Mathematical Approaches to Polymer Sequence Analysis and Related Problems


Book Description

An edited volume describing the latest developments in approaching the problem of polymer sequence analysis, with special emphasis on the most relevant biopolymers (peptides and DNA) but not limited to them. The chapters will include peptide sequence analysis, DNA sequence analysis, analysis of biopolymers and nonpolymers, sequence alignment problems, and more.




Mathematical Approaches to Polymer Sequence Analysis and Related Problems


Book Description

An edited volume describing the latest developments in approaching the problem of polymer sequence analysis, with special emphasis on the most relevant biopolymers (peptides and DNA) but not limited to them. The chapters will include peptide sequence analysis, DNA sequence analysis, analysis of biopolymers and nonpolymers, sequence alignment problems, and more.




Sequence-Controlled Polymers


Book Description

Edited by a leading authority in the field, the first book on this important and emerging topic provides an overview of the latest trends in sequence-controlled polymers. Following a brief introduction, the book goes on to discuss various synthetic approaches to sequence-controlled polymers, including template polymerization, genetic engineering and solid-phase chemistry. Moreover, monomer sequence regulation in classical polymerization techniques such as step-growth polymerization, living ionic polymerizations and controlled radical polymerizations are explained, before concluding with a look at the future for sequence-controlled polymers. With its unique coverage of this interdisciplinary field, the text will prove invaluable to polymer and environmental chemists, as well as biochemists and bioengineers.




Determination of Polymer Structures, Sequences, and Architectures by Multidimensional Mass Spectrometry


Book Description

The matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-ToF/ToF MS) characteristics of different polystyrenes and polybutadienes are discussed in this dissertation. The compounds examined include linear, cyclic, in-chain substituted, and star-branched polymers as well as copolymers of styrene and either para-dimethylsilyl styrene (p-DMSS) or meta-dimethylsilyl styrene (m-DMSS). Chapter IV describes the differentiation of cyclic and linear polymers by 2D-mass spectrometry. The silverated quasimolecular ions from cyclic and linear polystyrenes and polybutadienes, formed by MALDI, give rise to significantly different fragmentation patterns in tandem mass spectrometry (MS2) experiments. With both architectures, fragmentation starts with homolytic cleavage at the weakest bond, usually a C-C bond, to generate two radicals. From linear structures, the separated radicals depolymerize extensively by monomer losses and backbiting rearrangements, leading to low-mass radical ions and much less abundant medium- and high-mass closed-shell fragments that contain one of the original end groups, along with internal fragments. With cyclic structures, depolymerization is less efficient, as it can readily be terminated by intramolecular H-atom transfer between the still interconnected radical sites (disproportionation). These differences in fragmentation reactivity result in substantially different fragment ion distributions in the MS2 spectra. Simple inspection of the relative intensities of low- vs. high-mass fragments permits conclusive determination of the macromolecular architecture, while full spectral interpretation reveals the individual end groups of the linear polymers or the identity of the linker used to form the cyclic polymer. Chapter V presents the first sequence analysis of styrenic copolymers by tandem MS. Copolymers of para-dimethylsilyl styrene (p-DMSS) or m-DMSS with styrene were prepared by living anionic polymerization. The MALDI-MS2 results for p-DMSS indicate that a block copolymer is formed, with the para-substituted styrene incorporated near the initiator. On the other hand, the MS2 results of m-DMSS reveal that a random copolymer is formed, consistent with comparable reactivities for m-DMSS and styrene. These findings suggest that p-DMSS is more reactive than m-DMSS. The single-stage (1D) MALDI-MS results further show that linear and 2-armed architectures are formed with both the m-DMSS and the p-DMSS comonomers. The last Chapter, VI, focuses on the differentiation of linear in-chain substituted, cyclic, and star-branched polystyrene (PS) by tandem mass spectrometry. The in-chain functionalized PS gives a MS2 fragmentation pattern that is different from the one observed for cyclic PS with two linker units and, again, with a simple inspection of the tandem mass spectra, these architectures can easily be distinguished. The four-arm star-branched polymer investigated mainly breaks down by losing arms under MALDI-MS2 conditions. Overall, this dissertation documents the usefulness of combined 1D and 2D mass spectrometry experiments for the identification of polymer substituents and their location, for distinguishing polymer architectures, and for determining copolymer sequences.The results presented in this dissertation have been published or are pending for publication in the following journals. 1. Quirk, R. P.; Wang, S-F.; Foster, M. D.; Wesdemiotis, C.; Yol, A. M. "Synthesis of Cyclic Polystyrenes Using Living Anionic Polymerization and Metathesis Ring-Closure" Macromolecules 2011, 44, 7538-7545. 2. Liu, B.; Quirk, R. P.; Wesdemiotis, C.; Yol, A. M.; Foster, M. D. "Precision Synthesis of [omega]-Branch, End-Functionalized Comb Polystyrenes Using Living Anionic Polymerization and Thiol-Ene 'Click' Chemistry" Macromolecules 2012, 45, 9233-9242. 3. Yol, A. M.; Dabney, D. E.; Wang, S-F.; Laurent, B. A.; Foster, M. D.; Quirk, R. P.; Grayson, S. M.; Wesdemiotis, C. "Differentiation of Linear and Cyclic Polymer Architectures by MALDI Tandem Mass Spectrometry (MALDI-MS2)" J. Am. Soc. Mass Spectrom. 2013, 24, 74-82. 4. Quirk, R.P.; Chavan, V.; Janoski, J.; Yol, A.; Wesdemiotis, C. "General Functionalization Method for Synthesis of [alpha]-Functionalized Polymers by Combination of Anionic Polymerization and Hydrosilation Chemistry" Macromolecular Symposia 2013, 323, 51-57. 5. Yol, A. M.; Janoski, J.; Quirk, R. P.; Wesdemiotis, C. "Sequence Analysis of Styrenic Copolymers by Tandem Mass Spectrometry" Anal. Chem. (Submitted)




NMR Spectroscopy of Polymers


Book Description

R.N.IBBETT This book provides a source of information on all major aspects of NMR spectroscopy of synthetic polymers. It represents a deliberate attempt to pull together the numerous strands of the subject in a single comprehensive volume, designed to be readable at every scientific level. It is intended that the book will be of use to the vast majority of polymer scientists and NMR spec troscopists alike. Readers new to NMR will find extensive information within the book on the available techniques, allowing full exploration of the many polymer science applications. Readers already established within a branch of NMR will find the book an excellent guide to the practical study of polymers and the inter pretation of experimental data. Readers who have specialised in polymer NMR will find the book a valuable dictionary of proven methodologies, as well as a guide to the very latest developments in the subject. Workers from all of the main branches of polymer NMR have been invited to contribute. Each chapter therefore contains information relating to a parti cular investigative topic, indentified mainly on the basis of technique. The book is loosely divided between solution and solid-state domains, although the numerous interconnections confirm that these two domains are parts of the same continuum. Basic principles are explained within each chapter, combined with discussions of experimental theory and applications. Examples of polymer investigations are covered generously and in many chapters there are discussions of the most recent theoretical and experimental developments.




Pyrolysis-based Methods for Polymer Characterization


Book Description

"The field of polymer analysis features many challenges. In general, there is a need for novel or improved analytical methods for contemporary industrial copolymers. Such polymers are often extremely complex, featuring distributions in molar mass, chemical composition, sequence, etc. In this work various aspects of copolymer analysis were explored, to advance the field to better meet current industrial needs. Two main aspects of copolymer analysis were investigated, namely sequence determination and heterogeneity analysis as a function of molar mass. The sequence analysis of copolymers gives insight in the order of monomers in the polymer backbone. Pyrolysis-gas chromatography (Py-GC) was explored as a method for the analysis of acrylate copolymers. It was found that the method was well applicable to the sequencing of acrylate copolymers, even being capable of sequencing ternary copolymers. The sequencing of styrene-acrylate copolymers was also investigated and proved to be more challenging, requiring an external calibration approach to derive sequence information. For the heterogeneity analysis of copolymers various hyphenations of liquid chromatography and pyrolysis-based analysis methods were developed. A method for Py-GC hyphenation to size-exclusion chromatography was developed, this method provided detailed information on the polymer’s chemical nature as a function of molar mass. The method required relatively long analysis time however, therefore the GC separation was omitted in a later study yielding a size-exclusion chromatography-pyrolysis-mass spectrometry hyphenation. This method yielded greatly reduced analysis times while delivering comparable chemical information. Overall, the research covered in this work should accelerate the development of novel (sustainable) polymers."--




Practical Polymer Analysis


Book Description

The aim of this book is to familiarize the reader with the practical aspects of polymer analysis. A wealth of practical detail, including some detailed methods is included. The book covers not only the analysis of the main types of polymers and copolymers now in use commercially, but also the analysis of minor non-polymeric components of the polymer formulation, whether they be deliberately added, such as processing additives, or whether they occur adventitiously, such as moisture and residual monomers and solvent. A broad scheme for the examination of polymers is discussed in Chapter 2. Practically all of the major newer analytical techniques and many of the older classical techniques, have been used to examine polymers and their additive systems. As so many different polymers are now used commercially it is also advisable when attempting to identify a polymer to classify it by first separating it into pure polymeric and gross non polymeric fractions (Chapter Z) and then carrying out at least a qualitative elemental analysis and possible a quantitative analysis (Chapters 3 and 4) and then in some cases, depending on the elements found, to carry out functional group analysis (Chapters 6 and 9).




Developments in Polymer Characterisation


Book Description

The policy adopted in Volume 1 of this series of including a relatively small number of topics for detailed review has been continued here. The techniques selected have received considerable attention in recent years. F or this reason and because of the significance of the characterisation data, further coverage of 13C nuclear magnetic resonance spectroscopy and small angle neutron scattering is given in the first two chapters. In Chapter I a large part of the review describes the determination of monomer sequence distributions and configurational sequences in copolymers formed from more than one polymerisable monomer. The review on neutron scattering (Chapter 2) is directed towards the determination of the chain conformation in semi-crystaIIine polymers, which has provided important results for the interpretation of chain folding and morphology in crystaIIisable polymers. Laser Raman spectroscopy has also been used for morphological studies, and this application together with a description of the theoretical and experimental aspects of the technique is given in Chapter 3. X-ray photoelectron spectroscopy because of its extreme sensitivity to surface characteristics has provided information on polymeric solids that could not be obtained by other techniques. The principles and practice of this ESCA technique, including its use for simple elemental analysis, structural elucidation and depth profiling, are described in Chapter 4. The final two chapters are mainly concerned with the chain conformation of polymers in dilute solution. Ultrasonic techniques (Chapter 5) show pmmise for observing the dynamics of conformational changes.




Molecular Characterization and Analysis of Polymers


Book Description

Written by expert contributors from the academic and industrial sectors, this book presents traditional and modern approaches to polymer characterization and analysis. The emphasis is on pragmatics, problem solving and property determination; real-world applications provide a context for key concepts. The characterizations focus on organic polymer and polymer product microstructure and composition. Approaches molecular characterization and analysis of polymers from the viewpoint of problem-solving and polymer property characterization, rather than from a technique championing approach Focuses on providing a means to ascertaining the optimum approach or technique(s) to solve a problem/measure a property, and thereby develop an analytical competence in the molecular characterization and analysis of real-world polymer products Provides background on polymer chemistry and microstructure, discussions of polymer chain, morphology, degradation, and product failure and additive analysis, and considers the supporting roles of modeling and high-throughput analysis