Polymer Surfaces and Interfaces


Book Description

Polymeric materials are used for a legion of applications in a wide array of technological areas, and their proper surface/interface characteristics are of cardinal importance for their applications. Therefore, the need to characterize polymer surfaces/interfaces and their suitable modification to impart desired characteristics is quite patent. This book chronicles the proceedings of the Symposium on Polymer Surfaces and Interfaces: Characterization, Modification and Application held as a part of the Society of Plastics Engineers Annual Technical Conference, Boston, May 7--11, 1995. The articles in this book address many aspects of polymer surfaces and interfaces. Topics covered include: various ways (chemical, photochemical, laser, flame, corona) to modify polymer surfaces; modification of contact lens surfaces; various ways to analyze/characterize polymer surfaces; metal/polymer interfaces; metal/polyimide adhesion; metal/self-assembled organic monolayer interfaces; polymer alignment layers for liquid crystals; alignment of liquid crystal surfaces; polyimide alignment layers; molecular re-orientation of polymer surfaces; plasma polymerized organic coatings; epoxy/fiber interphase; epoxy underfill materials for packaging integrated circuits; transport in polymers; polymer miscibility; and cell adhesion.




Polymer Surfaces and Interfaces: Characterization, Modification and Application


Book Description

Polymeric materials are used for a legion of applications in a wide array of technological areas, and their proper surface/interface characteristics are of cardinal importance for their applications. Therefore, the need to characterize polymer surfaces/interfaces and their suitable modification to impart desired characteristics is quite patent. This book chronicles the proceedings of the Symposium on Polymer Surfaces and Interfaces: Characterization, Modification and Application held as a part of the Society of Plastics Engineers Annual Technical Conference, Boston, May 7--11, 1995. The articles in this book address many aspects of polymer surfaces and interfaces. Topics covered include: various ways (chemical, photochemical, laser, flame, corona) to modify polymer surfaces; modification of contact lens surfaces; various ways to analyze/characterize polymer surfaces; metal/polymer interfaces; metal/polyimide adhesion; metal/self-assembled organic monolayer interfaces; polymer alignment layers for liquid crystals; alignment of liquid crystal surfaces; polyimide alignment layers; molecular re-orientation of polymer surfaces; plasma polymerized organic coatings; epoxy/fiber interphase; epoxy underfill materials for packaging integrated circuits; transport in polymers; polymer miscibility; and cell adhesion.




Polymer Surfaces and Interfaces


Book Description

In what is an extremely practical and applicable new work, experts provide concise explanations, with examples and illustrations, of the key techniques in this important field. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems. They will know that the surfaces and interfaces of polymers play an important role in most of the application areas of polymers, from moulds, foils, and composites, to biomaterials and applications in micro- and nanotechnology.




Polymer Surfaces and Interfaces


Book Description

In what is an extremely practical and applicable new work, experts provide concise explanations, with examples and illustrations, of the key techniques in this important field. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems. They will know that the surfaces and interfaces of polymers play an important role in most of the application areas of polymers, from moulds, foils, and composites, to biomaterials and applications in micro- and nanotechnology.




Polymeric Biomaterials for Tissue Regeneration


Book Description

This book reviews state-of-the-art of polymeric biomaterials for regenerative medicine, and highlights advances in both basic science and clinical practice. It summarizes the latest techniques in polymeric scaffold fabrication, delivery carriers, physicochemical property modulation, as well as their influence on adhesion and the performance of biomolecules, cells and tissues. It also describes methods for creating biofunctional surfaces/interfaces and subsequently modulating the host response to implantable materials. Lastly, it discusses the applications of biomaterials and constructs in soft-tissue regenerative medicine. It is a valuable resource for materials scientists and engineers wishing to identify research priorities to fulfill clinical needs and provides physicians with insights into emerging novel biomaterials. This integrated approach also offers engineering students a sense of the relevance of materials science in the development of novel therapeutic strategies.




Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, volume 2


Book Description

This volume documents the proceedings of the Second International Symposium on Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, held in Newark, New Jersey, December 3-6, 2001. Polyimides possess many desirable attributes, so this class of materials has found applications in many technologies ranging from




Polymer Surface Modification to Enhance Adhesion


Book Description

POLYMER SURFACE MODIFICATION TO ENHANCE ADHESION This unique, comprehensive and groundbreaking book is the first on this important subject. Polymer Surface Modification to Enhance Adhesion comprises 13 chapters and is divided into two parts: Part 1: Energetic Treatments; and Part 2: Chemical Treatments. Topics covered include atmospheric pressure plasma treatment of polymers to enhance adhesion; corona treatment of polymer surfaces to enhance adhesion; flame surface treatment of polymers to enhance adhesion; vacuum UV photo-oxidation of polymer surfaces to enhance adhesion; optimization of adhesion of polymers using photochemical surface modification UV/Ozone surface treatment of polymers to enhance adhesion; adhesion enhancement of polymer surfaces by ion beam treatment; polymer surface modification by charged particles; laser surface modification of polymeric materials; competition in adhesion between polysort and monosort functionalized polyolefinic surfaces; amine-terminated dendritic materials for polymer surface modification; arginine-glycine-aspartic acid (RGD) modification of polymer surfaces; and adhesion promoters for polymer surfaces. Audience The book will be of great interest to polymer scientists, surface scientists, adhesionists, materials scientists, plastics engineers, and to those involved in adhesive bonding, packaging, printing, painting, metallization, biological adhesion, biomedical devices, and polymer composites.




Surface Modification of Biomaterials


Book Description

The surface modification of biomaterials plays a significant role in determining the outcome of biological-material interactions. With the appropriate modification a material's surface can be tailored to improve biocompatibility, adhesion and cell interactions. Consequently surface modification is vital in the development and design of new biomaterials and medical devices. Surface modification of biomaterials reviews both established surface modifications and those still in the early stages of research and discusses how they can be used to optimise biological interactions and enhance clinical performance.Part one begins with chapters looking at various types and techniques of surface modification including plasma polymerisation, covalent binding of poly (ethylene glycol) (PEG), heparinisation, peptide functionalisation and calcium phosphate deposition before going on to examine metal surface oxidation and biomaterial surface topography to control cellular response with particular reference to technologies, cell behaviour and biomedical applications. Part two studies the analytical techniques and applications of surface modification with chapters on analysing biomaterial surface chemistry, surface structure, morphology and topography before moving onto discuss modifying biomaterial surfaces to optimise interactions with blood, control infection, optimise interactions with soft tissues, repair and regenerate nerve cells, control stem cell growth and differentiation and to optimise interactions with bone.The distinguished editor and international team of contributors to Surface modification of biomaterials have produced a unique overview and detailed chapters on a range of surface modification techniques which will provide an excellent resource for biomaterials researchers and scientists and engineers concerned with improving the properties of biomaterials. It will also be beneficial for academics researching surface modification. - Reviews both established surface modifications and those still in the early stages of research and how they can be used to optimise biological interactions and enhance clinical performance - Studies analytical techniques and applications of surface modification with chapters assessing biomaterial surface chemistry, surface structure, morphology and topography - Discusses modifying biomaterial surfaces to optimise interactions with blood and soft tissues and also to repair and regenerate nerve cells and control infection




Recent Advances in Adhesion Science and Technology in Honor of Dr. Kash Mittal


Book Description

The surface of an object is the first thing we see or touch. Nearly every article or object we encounter at home, in industry, land transportation, aerospace, or the medical field in some way uses an adhesive, a sealant, or a decorative coating. Adhesion science provides the technology and the know-how behind these applications. Recent Advances in




Surfactant Science and Technology


Book Description

Surfactant research explores the forces responsible for surfactant assembly and the critical industrial, medical, and personal applications, including viscosity control, microelectronics, drug stabilization, drug delivery, cosmetics, enhanced oil recovery, and foods. Surfactant Science and Technology: Retrospects and Prospects, "a Festschrift in ho