Polymeric Biomaterials for Healthcare Applications


Book Description

Polymeric Biomaterials for Healthcare Applications details a broad range of polymeric biomaterials, methods of synthesis and preparation, and their various applications in healthcare and biomedicine. The book provides a fundamental overview of polymers and processing technologies to allow clinical scientists to explore the use of these polymers in alternative applications. A wide variety of healthcare applications are covered, including treatment for autoimmune diseases and bacterial infections, tissue engineering, gene delivery, wound dressing, and more. The book provides a core introductory text for clinical and materials scientists new to the area of polymeric biomaterials. This book will prove useful to academics and researchers in materials science, biomedical engineering, clinical science and pharmaceutical science. - Covers a broad range of polymeric biomaterials, including chitosan, alginate, cellulose, collagen, synthetic conjugates, and more - Details a wide variety of healthcare applications for polymeric biomaterials, such as orthopedic engineering, antibiotics, targeted drug delivery, and more - Provides a detailed overview of polymer processing technologies and sterilization considerations




Natural and Synthetic Biomedical Polymers


Book Description

Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future




Polymeric Biomaterials: Structure and function


Book Description

The third edition of a bestseller, this comprehensive reference presents the latest polymer developments and most up-to-date applications of polymeric biomaterials in medicine. Expanded into two volumes, the first volume covers the structure and properties of synthetic and natural polymers as well as bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, and electrospinning for regenerative medicine. This substantially larger resource includes state-of-the-art research and successful breakthroughs in applications that have occurred in the last ten years.




Polymers for Dental and Orthopedic Applications


Book Description

Recent advances not only in the creation of new polymers but also in their processing and production have ushered in huge strides in a variety of biomedical and clinical areas. Orthopedics and dentistry are two such areas that benefit immensely from developments in polymer science and technology. Polymers for Dental and Orthopedic Applications




Absorbable and Biodegradable Polymers


Book Description

Interest in biodegradable and absorbable polymers is growing rapidly in large part because of their biomedical implant and drug delivery applications. This text illustrates creative approaches to custom designing unique, fiber-forming materials for equally unique applications. It includes an example of the development and application of a new absor




Materials Development and Processing for Biomedical Applications


Book Description

Materials Development and Processing for Biomedical Applications focuses on various methods of manufacturing, surface modifications, and advancements in biomedical applications. This book examines in detail about five different aspects including, materials properties, development, processing, surface coatings, future perspectives and fabrication of advanced biomedical devices. Fundamental aspects are discussed to better understand the processing of various biomedical materials such as metals, ceramics, polymers, composites, etc. A wide range of surface treatments are covered in this book that will be helpful for the readers to understand the importance of surface treatments and their future perspectives. Additional Features Include: Examines various properties of biomedical materials at the beginning in several chapters which will enrich the fundamental knowledge of the readers. Discusses advancements in various fields of biomedical applications. Provides a glimpse of characterization techniques for the evaluation of material properties. Addresses biocompatibility, biocorrosion, and tribocorrosion. This book explores new and novel strategies for the development of materials and their biomedical applications. It will serve as a comprehensive resource for both students and scientists working in materials and biomedical sciences.




Natural-Based Polymers for Biomedical Applications


Book Description

Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine




Polymers for Biomedical Applications


Book Description

Research on applications of polymers for biomedical applications has increased dramatically to find improved medical plastics for this rapidly evolving field. This book brings together various aspects of recent research and developments within academia and industry related to polymers for biomedical applications.




Fundamental Biomaterials: Polymers


Book Description

Fundamental Biomaterials: Polymers provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices. Chapters analyze the types of polymers and discuss a range of biomedical applications. It is the first title in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on classification, materials properties, behavior, biocompatibility and applications. The book concludes with essential information on wear, lifetime prediction and cytotoxicity of biomaterials. This title will be of use to researchers and professionals in development stages, but will also help medical researchers understand and effectively communicate the requirements of a biomaterial for a specific application. Further, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels. - Provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices - Includes analyses of the types of polymers and a discussion of a range of biomedical applications - Presents essential information on wear, lifetime prediction and cytotoxicity of biomaterials - Explores both theoretical and practical aspects of polymers in biomaterials




Advanced Polymers in Medicine


Book Description

The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.