Polymerization Process Modeling


Book Description

Large numbers of chemical engineers work with polymerization reactions and the problems and the challenges particular to the production of polymers. These problems have no counterparts in small-molecule reactions, and thus usually are neglected in standard reactor courses. This book provides a clearly written, comprehensive textbook on polymerization reactor engineering, appropriate for senior-level undergraduate and 1st- and 2nd-year graduate students. It focuses on polymer structure and structure-property relationships conditions that can play a role in dictating stucture.




Mathematical Modelling for Polymer Processing


Book Description

Polymers are substances made of macromolecules formed by thousands of atoms organized in one (homopolymers) or more (copolymers) groups that repeat themselves to form linear or branched chains, or lattice structures. The concept of polymer traces back to the years 1920's and is one of the most significant ideas of last century. It has given great impulse to indus try but also to fundamental research, including life sciences. Macromolecules are made of sm all molecules known as monomers. The process that brings monomers into polymers is known as polymerization. A fundamental contri bution to the industrial production of polymers, particularly polypropylene and polyethylene, is due to the Nobel prize winners Giulio Natta and Karl Ziegler. The ideas of Ziegler and Natta date back to 1954, and the process has been improved continuously over the years, particularly concerning the design and shaping of the catalysts. Chapter 1 (due to A. Fasano ) is devoted to a review of some results concerning the modelling of the Ziegler- Natta polymerization. The specific ex am pie is the production of polypropilene. The process is extremely complex and all studies with relevant mathematical contents are fairly recent, and several problems are still open.




Step-Growth Polymerization Process Modeling and Product Design


Book Description

Understand quantitative model step-growth polymerization plans and how to predict properties of the product polymer with the essential information in Step-Growth Polymerization Process Modeling and Product Design. If you want to learn how to simulate step-growth polymerization processes using commercial software and seek an in-depth, quantitative understanding of how to develop, use, and deploy these simulations, consult this must-have guide. The book focuses on quantitative relationships between key process input variables (KPIVs) and key process output variables (KPOVs), and the integrated modeling of an entire polymer manufacturing train.




Modeling and Simulation in Polymers


Book Description

Filling a gap in the literature and all set to become the standard in this field, this monograph begins with a look at computational viscoelastic fluid mechanics and studies of turbulent flows of dilute polymer solutions. It then goes on discuss simulations of nanocomposites, polymerization kinetics, computational approaches for polymers and modeling polyelectrolytes. Further sections deal with tire optimization, irreversible phenomena in polymers, the hydrodynamics of artificial and bacterial flagella as well as modeling and simulation in liquid crystals. The result is invaluable reading for polymer and theoretical chemists, chemists in industry, materials scientists and plastics technologists.




Aspen Plus


Book Description

ASPEN PLUS® Comprehensive resource covering Aspen Plus V12.1 and demonstrating how to implement the program in versatile chemical process industries Aspen Plus®: Chemical Engineering Applications facilitates the process of learning and later mastering Aspen Plus®, the market-leading chemical process modeling software, with step-by-step examples and succinct explanations. The text enables readers to identify solutions to various process engineering problems via screenshots of the Aspen Plus® platforms in parallel with the related text. To aid in information retention, the text includes end-of-chapter problems and term project problems, online exam and quiz problems for instructors that are parametrized (i.e., adjustable) so that each student will have a standalone version, and extra online material for students, such as Aspen Plus®-related files, that are used in the working tutorials throughout the entire textbook. The second edition of Aspen Plus®: Chemical Engineering Applications includes information on: Various new features that were embedded into Aspen Plus V12.1 and existing features which have been modified Aspen Custom Modeler (ACM), covering basic features to show how to merge customized models into Aspen Plus simulator New updates to process dynamics and control and process economic analysis since the first edition was published Vital areas of interest in relation to the software, such as polymerization, drug solubility, solids handling, safety measures, and energy saving For chemical engineering students and industry professionals, the second edition of Aspen Plus®: Chemical Engineering Applications is a key resource for understanding Aspen Plus and the new features that were added in version 12.1 of the software. Many supplementary learning resources help aid the reader with information retention.




Polymer Processing


Book Description

Engineering of polymers is not an easy exercise: with evolving technology, it often involves complex concepts and processes. This book is intended to provide the theoretical essentials: understanding of processes, a basis for the use of design software, and much more. The necessary physical concepts such as continuum mechanics, rheological behavior and measurement methods, and thermal science with its application to heating-cooling problems and implications for flow behavior are analyzed in detail. This knowledge is then applied to key processing methods, including single-screw extrusion and extrusion die flow, twin-screw extrusion and its applications, injection molding, calendering, and processes involving stretching. With many exercises with solutions offered throughout the book to reinforce the concepts presented, and extensive illustrations, this is an essential guide for mastering the art of plastics processing. Practical and didactic, Polymer Processing: Principles and Modeling is intended for engineers and technicians of the profession, as well as for advanced students in Polymer Science and Plastics Engineering.




Polymerization Process Modeling


Book Description

A textbook for a senior or graduate course in polymerization modeling, with enough material for a dense quarter or a leisurely semester. Assumes a basic polymer course, and a familiarity with chemical kinetics and the basic notions of mass and energy balances. Explains modeling techniques that can help design a process capable of imparting a polymer with certain specified end-user properties. Also usable as a self-study tutorial for engineers switching to polymer reactions from a neighboring discipline. Annotation copyright by Book News, Inc., Portland, OR




Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications


Book Description

A comprehensive and example oriented text for the study of chemical process design and simulation Chemical Process Design and Simulation is an accessible guide that offers information on the most important principles of chemical engineering design and includes illustrative examples of their application that uses simulation software. A comprehensive and practical resource, the text uses both Aspen Plus and Aspen Hysys simulation software. The author describes the basic methodologies for computer aided design and offers a description of the basic steps of process simulation in Aspen Plus and Aspen Hysys. The text reviews the design and simulation of individual simple unit operations that includes a mathematical model of each unit operation such as reactors, separators, and heat exchangers. The author also explores the design of new plants and simulation of existing plants where conventional chemicals and material mixtures with measurable compositions are used. In addition, to aid in comprehension, solutions to examples of real problems are included. The final section covers plant design and simulation of processes using nonconventional components. This important resource: Includes information on the application of both the Aspen Plus and Aspen Hysys software that enables a comparison of the two software systems Combines the basic theoretical principles of chemical process and design with real-world examples Covers both processes with conventional organic chemicals and processes with more complex materials such as solids, oil blends, polymers and electrolytes Presents examples that are solved using a new version of Aspen software, ASPEN One 9 Written for students and academics in the field of process design, Chemical Process Design and Simulation is a practical and accessible guide to the chemical process design and simulation using proven software.




Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing


Book Description

Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing Detailed resource on the “Why,” “What,” and “How” of integrated process modeling, advanced control and data analytics explained via hands-on examples and workshops for optimizing polyolefin manufacturing. Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing discusses, as well as demonstrates, the optimization of polyolefin production by covering topics from polymer process modeling and advanced process control to data analytics and machine learning, and sustainable design and industrial practice. The text also covers practical problems, handling of real data streams, developing the right level of detail, and tuning models to the available data, among other topics, to allow for easy translation of concepts into practice. Written by two highly qualified authors, Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing includes information on: Segment-based modeling of polymer processes; selection of thermodynamic methods; estimation of physical properties for polymer process modeling Reactor modeling, convergence tips and data-fit tool; free radical polymerization (LDPE, EVA and PS), Ziegler-Natta polymerization (HDPE, PP, LLPDE, and EPDM) and ionic polymerization (SBS rubber) Improved polymer process operability and control through steady-state and dynamic simulation models Model-predictive control of polyolefin processes and applications of multivariate statistics and machine learning to optimizing polyolefin manufacturing Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing enables readers to make full use of advanced computer models and latest data analytics and machine learning tools for optimizing polyolefin manufacturing, making it an essential resource for undergraduate and graduate students, researchers, and new and experienced engineers involved in the polyolefin industry.




Petroleum Refinery Process Modeling


Book Description

A comprehensive review of the theory and practice of the simulation and optimization of the petroleum refining processes Petroleum Refinery Process Modeling offers a thorough review of how to quantitatively model key refinery reaction and fractionation processes. The text introduces the basics of dealing with the thermodynamics and physical property predictions of hydrocarbon components in the context of process modeling. The authors - three experts on the topic - outline the procedures and include the key data required for building reaction and fractionation models with commercial software. The text shows how to filter through the extensive data available at the refinery and using plant data to begin calibrating available models and extend the models to include key fractionation sub-models. It provides a sound and informed basis to understand and exploit plant phenomena to improve yield, consistency, and performance. In addition, the authors offer information on applying models in an overall refinery context through refinery planning based on linear programming. This important resource: -Offers the basic information of thermodynamics and physical property predictions of hydrocarbon components in the context of process modeling -Uses the key concepts of fractionation lumps and physical properties to develop detailed models and workflows for atmospheric (CDU) and vacuum (VDU) distillation units -Discusses modeling FCC, catalytic reforming and hydroprocessing units Written for chemical engineers, process engineers, and engineers for measurement and control, this resource explores the advanced simulation tools and techniques that are available to support experienced and aid new operators and engineers.