Polymers from Fossil and Renewable Resources


Book Description

The book describes the development and commercialization of materials with viscoelastic properties, placing particular emphasis on the scientific and technological differences between plastics and bioplastics. The authors explain how to handle each of the two types of materials and determine the comparative environmental impact of the material life-cycle. The practical values of the overlapping aspects of the two types of materials from technical properties to eco-compatibility are also discussed.




Monomers, Polymers and Composites from Renewable Resources


Book Description

The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. - Discusses bio-refining with explicit application to materials - Replete with examples of applications of the concept of sustainable development - Presents an impressive variety of novel macromolecular materials




Carbon Management


Book Description

Considerable international concerns exist about global climate change and its relationship to the growing use of fossil fuels. Carbon dioxide is released by chemical reactions that are employed to extract energy from fuels, and any regulatory policy limiting the amount of CO2 that could be released from sequestered sources or from energy-generating reactions will require substantial involvement of the chemical sciences and technology R&D community. Much of the public debate has been focused on the question of whether global climate change is occurring and, if so, whether it is anthropogenic, but these questions were outside the scope of the workshop, which instead focused on the question of how to respond to a possible national policy of carbon management. Previous discussion of the latter topic has focused on technological, economic, and ecological aspects and on earth science challenges, but the fundamental science has received little attention. This workshop was designed to gather information that could inform the Chemical Sciences Roundtable in its discussions of possible roles that the chemical sciences community might play in identifying and addressing underlying chemical questions.




Renewable Polymers


Book Description

Presents the synthesis, technology and processing details of a large range of polymers derived from renewable resources It has been a long-term desire to replace polymers from fossil fuels with the more environmentally friendly polymers generated from renewable resources. Now, with the recent advancements in synthesis technologies and the finding of new functional monomers, research in this field has shown strong potential in generating better property polymers from renewable resources. A text describing these advances in synthesis, processing, and technology of such polymers not only provides the state-of-the-art information to researchers, but also acts to stimulate research in this direction. The contents are based on a wide range of functional monomers and the contributions are written by eminent researchers. Specifically Renewable Polymers: Demonstrates the design, synthesis, properties and applications of plant oil-based polymers Presents an elaborate review of acid mediated polymerization techniques for the generation of green polymers Details the production of polyhydroxyalkanoates (PHA) from olive oil based wastewater Describes the use of atom transfer radical polymerization (ATRP) techniques Reviews the renewable polymers derived from transgenic crop plants Provides an overview of a range of biomass-based polymers Concludes with the recent efforts and approaches exploiting the natural materials in developing drug delivery systems.




Polymers in Energy Conversion and Storage


Book Description

The research and development activities in energy conversion and storage are playing a significant role in our daily lives owing to the rising interest in clean energy technologies to alleviate the fossil-fuel crisis. Polymers are used in energy conversion and storage technology due to their low-cost, softness, ductility and flexibility compared to carbon and inorganic materials. Polymers in Energy Conversion and Storage provides in-depth literature on the applicability of polymers in energy conversion and storage, history and progress, fabrication techniques, and potential applications. Highly accomplished experts review current and potential applications including hydrogen production, solar cells, photovoltaics, water splitting, fuel cells, supercapacitors and batteries. Chapters address the history and progress, fabrication techniques, and many applications within a framework of basic studies, novel research, and energy applications. Additional Features Include: Explores all types of energy applications based on polymers and its composites Provides an introduction and essential concepts tailored for the industrial and research community Details historical developments in the use of polymers in energy applications Discusses the advantages of polymers as electrolytes in batteries and fuel cells This book is an invaluable guide for students, professors, scientists and R&D industrial experts working in the field.




Polymers from Renewable Resources


Book Description

This book is a printed edition of the Special Issue "Polymers from Renewable Resources" that was published in Polymers




Biocomposites - Bio-based Fibers and Polymers from Renewable Resources


Book Description

Biocomposites – Bio-based Fibres and Polymers from Renewable Resources: Processing, Performance, Durability and Applications provides a systematic and comprehensive review of recent developments in this important area of research. Chapters discuss novel techniques for processing and the characterization of biocomposites derived from renewable resources, focusing on durability, strength prediction, aging methods and performance evaluation. Future trends, directions and opportunities are also addressed. Readers will find an up-to-date summary of recent research findings that have been conducted on biocomposites, making this an essential reference resource for academic and industrial researchers and anyone working in the development of innovative materials from renewable resources. - Provides wide coverage of processing methods, mechanical performance and industrial applications - Emphasizes durability assessment of natural fiber composites in different environments







Renewable-Resource Materials


Book Description

I will plant in the wilderness the cedar the acacia-tree and the myrtle and the oil-tree; I will set in the desert the cypress, the plane-tree and the larch together; That they may see, and know and consider and understand together, That the hand of the Lord hath done this, ••• Isaiah, 41:19 and 20 (first portion) The need to improve our utilization of the Earth's natural resources is everyone's business, from every country. This book presents papers from all parts of the world on the subject of making new or improved polymers from renewable resources, be they plastics, elastomers, fibers, coatings, or adhesives. In important ways, this book constitutes part II of an edited work published by Plenum Press in 1983, "Polymer Applications of Renewable-Resource Materials. " To that extent, about half of the authors are the same. However, their papers present an update of their research three years later. The other half of the authors are entirely new. Bo~h of these books grew out of symposia sponsored by the Polymeric Materials: Science and Engineering Division of the American Chemical Society. The papers for the present book are based loosely on a symposium held at the Miami Beach meeting in April, 1985. Unfortunately, interest in polymers from renewable resources fluctuates with the price and availability of petroleum oil. At the time of writing this preface, the price is low, and appears to be headed lower still.




Biobased Polymers


Book Description

Biobased Polymers: Properties and Applications in Packaging looks at how biopolymers may be used in packaging as a potential green solution. The book addresses bio-based feedstocks, production processes, packaging types, recent trends in packaging, the environmental impact of bio-based polymers, and legislative demands for food contact packaging materials. Chapters explore opportunities for biopolymers in key end-use sectors, the penetration of biopolymer based concepts in the packaging market, and barriers to widespread commercialization. As the development of bio-based material is an important factor for sustainably growing the packaging industry, these recent trends in consumer markets are extremely important as we move towards greener packaging. Hence, this resource is an invaluable addition on the topic. - Offers a comprehensive introduction to the subject for researchers interested in bio-based products, green and sustainable chemistry, polymer chemistry and materials science - Covers the market for bio-based materials - Includes discussions on legislative demands for food contact packaging materials - Describes interesting new technologies, including nanotechnology approaches