Polysaccharide Degrading Biocatalysts


Book Description

The transformation of polysaccharides into valuable compounds for health and industry requires the careful application of enzyme protocols and controlled biocatalysis. Polysaccharide-Degrading Biocatalysts provides a thorough grounding in these biocatalytic processes and their growing role in the depolymerization of polysaccharides, empowering researchers to discover and develop new enzyme-based approaches across pharmaceuticals, fuels, and food engineering. Here, over a dozen leading experts offer a close examination of structural polysaccharides, genetic modification of polysaccharides, polysaccharide degradation routes, pretreatments for enzymatic hydrolysis, hemicellulose-degrading enzymes, biomass valorization processes, oligosaccharide production, and enzyme immobilization for the hydrolysis of polysaccharides, among other topics and related research protocols. A final chapter considers perspectives and challenges in an evolving, carbohydrate-based economy. - Describes the role of enzymes in the degradation of polysaccharides to obtain building blocks for biochemical processes - Covers new tools for enzymatic evolution, research protocols, and process strategies contributing to large-scale applications - Explores the use of polysaccharide hydrolysis products in the areas of pharmaceuticals, fuels, and food engineering - Features chapter contributions from international experts




Glycoscience


Book Description

As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.




Handbook of Carbohydrate-Modifying Biocatalysts


Book Description

This book provides an actual overview of the structure, function, and application of carbohydrate-modifying biocatalysts. Carbohydrates have been disregarded for a long time by the scientific community, mainly due to their complex structure. Meanwhile, the situation changed with increasing knowledge about the key role carbohydrates play in biological processes such as recognition, signal transduction, immune responses, and others. An outcome of research activities in glycoscience is the development of several new pharmaceuticals against serious diseases such as malaria, cancer, and various storage diseases. Furthermore, the employment of carbohydrate-modifying biocatalysts—enzymes as well as microorganisms—will contribute significantly to the development of environmentally friendly processes boosting a shift of the chemical industry from petroleum- to bio-based production of chemicals from renewable resources. The updated content of the second edition of this book has been extended by discussing the current state of the art of using recombinantly expressed carbohydrate-modifying biocatalysts and the synthesis of minicellulosomes in connection with consolidated bioprocessing of lignocellulosic material. Furthermore, a synthetic biology approach for using DAHP-dependent aldolases to catalyze asymmetric aldol reactions is presented.




Biocatalysis in Polymer Science


Book Description

Biocatalysis in Polymer Science provides current information on biocatalysis, which is the use of enzymes or living organisms to carry out chemical reactions. All of the authors, including the editors, are experts and practitioners of polymer biocatalysis. Topics covered in this book include synthetic polymers, natural polymers, oligomers, and monomers. These topics amply demonstrate the versatility of this technology. Organic chemists, polymer chemists, biochemists, and graduate students will find this book a useful experience.




Biocatalytic Process Optimization


Book Description

Biocatalysis is very appealing to the industry because it allows, in principle, the synthesis of products not accessible by chemical synthesis. Enzymes are very effective, as are precise biocatalysts, as they are enantioselective, with mild reaction conditions and green chemistry. Biocatalysis is currently widely used in the pharmaceutical industry, food industry, cosmetic industry, and textile industry. This includes enzyme production, biocatalytic process development, biotransformation, enzyme engineering, immobilization, the synthesis of fine chemicals and the recycling of biocatalysts. One of the most challenging problems in biocatalysis applications is process optimization. This Special Issue shows that an optimized biocatalysis process can provide an environmentally friendly, clean, highly efficient, low cost, and renewable process for the synthesis and production of valuable products. With further development and improvements, more biocatalysis processes may be applied in the future.




Biocatalysts for Industry


Book Description

The application of enzymes or whole cells (fermentatively active or resting; microbial, plant, or animal) to carry out selective transformations of commercial importance is the central theme of industrial biocatalysis. Traditionally, biocatalysis has been in the domain of the life scientist or biochemical engineer. However, recent advances in this field have enabled biocatalytic processes to compete head on with, and in some cases out perform, conventional chemical processing. Chemo-biocatalytic systems are being developed thereby combining the most attractive features of bio catalysts, namely high specificity, with those of chemical catalysts, such as high reactivities and wide substrate specificities. Hence, synthetic chemists and chemical engineers are now beginning to use biocatalysts as highly selective reagents in chemical synthesis and processing. This book is about biocatalysts and their past, present, and potential applications in the food, pharmaceutical, and chemical industries. The con cept of the book did not emanate from a meeting. Rather, it is a compila tion of selected examples where biocatalysis either has already made a significant impact in the aforementioned industries, or has the potential to make a substantial contribution. I have been fortunate to have assembled contributions from world-class researchers in the field of biocatalysis. Their timely contributions are sincerely appreciated.




Modification of Polymers


Book Description

The sheer volume of topics which could have been included under our general title prompted us to make some rather arbitrary decisions about content. Modification by irradiation is not included because the activity in this area is being treated elsewhere. We have chosen to emphasize chemical routes to modification and have striven to pre sent as balanced a representation of current activity as time and page count permit. Industrial applications, both real and potential, are included. Where appropriate, we have encouraged the contributors to include review material to help provide the reader with adequate context. The initial chapter is a review from a historical perspective of polymer modification and contains an extensive bibliography. The remainder of the book is divided into four general areas: Reactions and Preparation of Copolymers Reactions and Preparation of Block and Graft Copolymers Modification Through Condensation Reactions Applications The chemical modification of homopolymers such as polyvinylchlo ride, polyethylene, poly(chloroalkylene sulfides), polysulfones, poly chloromethylstyrene, polyisobutylene, polysodium acrylate, polyvinyl alcohol, polyvinyl chloroformate, sulfonated polystyrene; block and graft copolymers such as poly(styrene-block-ethylene-co-butylene block-styrene), poly(I,4-polybutadiene-block ethylene oxide), star chlorine-telechelic polyisobutylene, poly(isobutylene-co-2,3-dimethyl- 1,3-butadiene), poly(styrene-co-N-butylmethacrylate); cellulose, dex tran and inulin, is described.




Stability and Stabilization of Biocatalysts


Book Description

Six years after the symposium on Stability and Stabilization of Enzymes, a second symposium, Stability and Stabilization of Biocatalysts, on which this book is based, was organized. At the symposium, 210 participants representing all continents came together to learn from 150 oral and poster communications.The volume brings up-to-date the work already going on, and identifies possible breakthroughs in the research. This timely book therefore presents cutting edge developments in topics such as non-covalent processes in solution, protein engineering and thermophile enzymes, immobilized enzymes, non-conventional media, and whole cells.An excellent addition to the available literature, it will make a useful contribution to this key area of applied biocatalysis.




Enzyme Biocatalysis


Book Description

This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.




White Biotechnology


Book Description

With contributions by numerous experts