Lectures on Polytopes


Book Description

Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.




Lectures on Polytopes


Book Description

Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.




An Introduction to Convex Polytopes


Book Description

The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.




Convex Polytopes


Book Description

"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London




Realization Spaces of Polytopes


Book Description

The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes". It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.




Regular Polytopes


Book Description

Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.




The Geometry of Higher-Dimensional Polytopes


Book Description

The majority of the chemical elements form chemical compounds with molecules of higher dimension (i.e., substantially exceeding three). This fact is very important for the analysis of molecular interactions in various areas: nanomedicine, nanotoxicology, and quantum biology. The Geometry of Higher-Dimensional Polytopes contains innovative research on the methods and applications of the structures of binary compounds. It explores the study of geometry polytopes from a higher-dimensional perspective, taking into account the features of polytopes that are models of chemical compounds. While highlighting topics including chemical compounds, symmetry transformation, and DNA structures, this book is ideally designed for researchers, academicians, and students seeking current research on dimensions present in binary compounds.




Polytopes, Rings, and K-Theory


Book Description

This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.




Abstract Regular Polytopes


Book Description

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.




Convex Polytopes


Book Description