Bacterial Population Genetics in Infectious Disease


Book Description

This book is a unique synthesis of the major concepts and methods in bacterial population genetics in infectious disease, a field that is now about 35 yrs old. Emphasis is given to explaining population-level processes that shape genetic variation in bacterial populations and statistical methods of analysis of bacterial genetic data. A "how to" of bacterial population genetics, which covers an extremely large range of organisms Expanding area of science due to high-throughput genome sequencing of bacterial pathogens Covers both fundamental approaches to analyzing bacterial population structures with conceptual background in bacterial population biology Detailed treatment of statistical methods




Population Genetics of Bacteria


Book Description

A authoritative summary of the current knowledge of the genetic organisation of bacterial populations.




Population Genetics of Bacteria


Book Description

Revisit the work of a pioneering innovator… • Explores the field of bacterial population genetics by highlighting the work of Thomas S. Whittam, best known for his work with enterohemorrhagic E. coli. • Features a compilation of research projects and ideas stemming from Dr. Whittam’s work that presents a broad perspective on the historical development of bacterial population genetics.




Genetics of Bacterial Diversity


Book Description

While other texts in this area deal almost solely with the "workhorse strain" Escherischia coli, Genetics of Bacterial Diversity is the first to deal with genetics and molecular biology of the wide range of other bacteria, which carry out a whole spectrum of important scientific, medical, agricultural, and biotechnological activities. Taking genetic diversity as its theme it illustrates a range of interesting phenomena such as genetic systems controlling pathogenicity, symbiosis, chemotaxis, metabolic characteristics, and differentiation. With each chapter written by acknowledged experts, this definitive book contains up-to-the-minute information on this rapidly developing field.Written by leading experts, this text--aimed at graduate-level students and above--describes the genetics and molecular biology of a wide range of bacteria.




The Pangenome


Book Description

This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.




Mathematical Population Genetics And Evolution Of Bacterial Cooperation


Book Description

Social life of bacteria is in the focus of recent research. Bacteria are simple enough to be accessible by science, but still complex enough to show cooperation, division of labor, bet-hedging, cross-talk and synchronized activities, and a rich variety of social traits. A central question of evolutionary theory is the explanation why this social life did develop, and why these systems are evolutionary stable. This book introduces the reader into the theory of evolution, covering classical models and as well as recent developments. The theory developed is used to represent the up-to-date understanding of social bacteria.This book will be useful for students and lecturers interested in mathematical evolutionary theory, as well as for researchers as a reference.




Microbial Evolution


Book Description

Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.




Bacterial Population Genetics in Infectious Disease


Book Description

This book is a unique synthesis of the major concepts and methods in bacterial population genetics in infectious disease, a field that is now about 35 yrs old. Emphasis is given to explaining population-level processes that shape genetic variation in bacterial populations and statistical methods of analysis of bacterial genetic data. A "how to" of bacterial population genetics, which covers an extremely large range of organisms Expanding area of science due to high-throughput genome sequencing of bacterial pathogens Covers both fundamental approaches to analyzing bacterial population structures with conceptual background in bacterial population biology Detailed treatment of statistical methods




Genetics of Bacterial Diversity


Book Description

Genetics of Bacterial Diversity focuses on the rapidly developing field of ""non-K-12"" bacterial genetics that is largely outside the scope of other texts. The book begins with an introductory chapter that outlines the phylogenetic relationships of bacteria and the range of metabolic, behavioral, and developmental phenomena displayed by them. Two chapters then review the genetic processes found in bacteria generally, and discuss a range of genetic techniques used to analyze the various special systems described in the body of the book, respectively. Subsequent chapters deal with various special metabolic capabilities characteristic of certain groups of bacteria (light production, photosynthesis, nitrogen fixation, antibiotic production, degradation of aromatic compounds and mercury resistance); developmental processes of cell-cycle associated motility, sporulation, and specialized colonial behavior; four components of bacterial pathogenicity for animals; and pathogenic and symbiotic interactions of bacteria with higher plants. The final chapter explains some of the concepts and the progress being made in the application of population genetics to bacteria. This book may be of interest to microbiologists wishing to catch up on the genetic basis of some of the classical phenomena of bacteriology, and geneticists unfamiliar with some of the things that bacteria can accomplish.




Introduction to Population Genetics


Book Description

Making the theory of population genetics relevant to readers, this book explains the related mathematics with a logical organization. It presents the quantitative aspects of population genetics, and employs examples of human genetics, medical evolution, human evolution, and endangered species. For an introduction to, and understanding of, population genetics.