Porous Ceramic Materials


Book Description

The development of porous ceramic materials has presented a new challenge to various industries, because porous ceramics are more durable in severe environments and their surface characteristics permit them to satisfy very specific requirements.




Porous Materials


Book Description

Approximately four million years of human history has passed. We have been using materials to make a variety of tools. The first materials used were naturally occurring materials such as animal bones, stones, wood etc.; and some of these familiar materials are porous. Porous materials are so familiar that they are sometimes forgotten or ignored. The taste experience of ice cream is created not only by adjusting ingre dients, but also by including air as an ingredient, i.e. pores that give the smooth texture of ice cream. This book is designed to describe and explain about pores, the synthesis of materials with pores (porous materials), and applications of porous materi als. This book is intended for engineers and scientists of different disciplines and specialities, and is expected to be useful in the design and synthesis of porous materials for existing as well as potential new applications. Let us rediscover pores. K. Ishizaki, S. Komameni and M. Nanko January 1998 1 Introduction 1.1 WHAT ARE POROUS MATERIALS? Porous materials are dermed as solids containing pores. Figure 1.1 shows different porous materials. Generally speaking, porous materials have a porosity of 0.2-0.95. The porosity means the fraction of pore volume to the total volume. Porous materials have been used in various applications from daily necessities, such as purifying drinking water by activated carbon or porous ceramics, to uses in modern industries, for example removing dusts from high purity process gases for semiconductor production.




Porosity of Ceramics


Book Description

Focuses on the effects of porosity and microcracking on the physical properties of ceramics, particularly nominally single phase ceramics. The book elucidates the fundamental interrelationships determining the development and use of materials for actual and potential engineering needs. It aims to help in the understanding of porosity effects on other materials, from ceramic composties, cements and plasters to rocks, metals and polymers.;College or university bookshops may order five or more copies at a special student price, available on request.




Porous Materials


Book Description

Engineers and scientists alike will find this book to be an excellent introduction to the topic of porous materials, in particular the three main groups of porous materials: porous metals, porous ceramics, and polymer foams. Beginning with a general introduction to porous materials, the next six chapters focus on the processing and applications of each of the three main materials groups. The book includes such new processes as gel-casting and freeze-drying for porous ceramics and self-propagating high temperature synthesis (SHS) for porous metals. The applications discussed are relevant to a wide number of fields and industries, including aerospace, energy, transportation, construction, electronics, biomedical and others. The book concludes with a chapter on characterization methods for some basic parameters of porous materials. Porous Materials: Processing and Applications is an excellent resource for academic and industrial researchers in porous materials, as well as for upper-level undergraduate and graduate students in materials science and engineering, physics, chemistry, mechanics, metallurgy, and related specialties. A comprehensive overview of processing and applications of porous materials – provides younger researchers, engineers and students with the best introduction to this class of materials Includes three full chapters on modern applications - one for each of the three main groups of porous materials Introduces readers to several characterization methods for porous materials, including methods for characterizing pore size, thermal conductivity, electrical resistivity and specific surface area




Cellular Ceramics


Book Description

Cellular ceramics are a specific class of porous materials which includes among others foams, honeycombs, connected fibers, robocast structures and assembled hollow spheres. Because of their particular structure, cellular ceramics display a wide variety of specific properties which make them indispensable for various engineering applications. An increasing number of patents, scientific literature and international conferences devoted to cellular materials testifies to a rapidly growing interest of the technical community in this topic. New applications for cellular ceramics are constantly being put under development. The book, authored by leading experts in this emerging field, gives an overview of the main aspects related to the processing of diverse cellular ceramic structures, methods of structural and properties characterisation and well established industrial, novel and potential applications. It is an introduction to newcomers in this research area and allows students to obtain an in-depth knowledge of basic and practical aspects of this fascinating class of advanced materials.




Recent Advances in Porous Ceramics


Book Description

Porous ceramics have recently gained growing importance in industry because of their many applications like filters, absorbers, dust collectors, thermal insulation, hot gas collectors, dielectric resonators, bioreactors, bone replacement and automobile engine components. Generally, porous ceramics have good properties such as mechanical strength, abrasion resistance, and chemical and thermal stability. These porous network ceramic structures also have relatively low density, low mass and low thermal conductivity. Furthermore, permeability is one of the most important properties of porous ceramics for different applications such as membranes because this property directly relates to the pressure drop during filtration. Pore size control is one key factor in fabrication of porous ceramics. The size of particles and their distribution of the raw materials, manufacturing techniques, types of binder used, distribution of binder, and sintering affect the final porosity and pore connectivity, are important things that must be considered during the manufacturing of a porous ceramic body. Therefore, the development of porous ceramic research requires sufficient mechanical and chemical stability as well as permeability. This book covers a wide range of topics such as porous ceramic structure and properties, preparation, simulation and fabrication, sintering, applications for bioceramics, sensors, magnetics and energy saving.




Advanced Ceramic Processing


Book Description

Ceramic oxides typically have a combination of properties that make them attractive for many applications compared with other materials. This book attempts to compile, unify, and present a recent development for the production techniques, such as electrochemical, foaming, and microwave sintering, of rare earth ceramic oxide materials. This book presents leading-edge research in this field from around the world. Although there is no formal partition of the book, the chapters cover several preparation methods for ceramic oxides, especially for coating and electrical applications. In addition, a fabrication foaming technique for porous ceramics with tailored microstructure along with distinctive properties is provided. The information provided in this book is very useful for a board of scientists and engineers from both academia and industry.




Introduction to Porous Materials


Book Description

The first comprehensive textbook on the timely and rapidly developing topic of inorganic porous materials This is the first textbook to completely cover a broad range of inorganic porous materials. It introduces the reader to the development of functional porous inorganic materials, from the synthetic zeolites in the 50’s, to today’s hybrid materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and related networks. It also provides the necessary background to understand how porous materials are organized, characterized, and applied in adsorption, catalysis, and many other domains. Additionally, the book explains characterization and application from the materials scientist viewpoint, giving the reader a practical approach on the characterization and application of the respective materials. Introduction to Inorganic Porous Materials begins by describing the basic concepts of porosity and the different types of pores, surfaces, and amorphous versus crystalline materials, before introducing readers to nature’s porous materials. It then goes on to cover everything from adsorption and catalysis to amorphous materials such as silica to inorganic carbons and Periodic Mesoporous Organosilicas (PMOs). It discusses the synthesis and applications of MOFs and the broad family of COFs. It concludes with a look at future prospects and emerging trends in the field. The only complete book of its kind to cover the wide variety of inorganic and hybrid porous materials A comprehensive reference and outstanding tool for any course on inorganic porous materials, heterogeneous catalysis, and adsorption Gives students and investigators the opportunity to learn about porous materials, how to characterize them, and understand how they can be applied in different fields Introduction to Inorganic Porous Materials is an excellent book for students and professionals of inorganic chemistry and materials science with an interest in porous materials, functional inorganic materials, heterogeneous catalysis and adsorption, and solid state characterization techniques.




Porous Media


Book Description

This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedical engineering, fuel technology, hydrometallurgy, nuclear reactor technology, and materials science. - Presents mechanisms of immiscible and miscible displacement (hydrodynamic dispersion) process in porous media - Examines relationships between pore structure and fluid transport - Considers approaches to enhanced oil recovery - Explores network modeling and perolation theory




Handbook of Porous Materials


Book Description

This four-volume handbook gives a state-of-the-art overview of porous materials, from synthesis and characterization all the way to manufacturing and industrial applications.