Porous Semiconductors


Book Description

Porous Semiconductors: Optical Properties and Applications provides an examination of porous semiconductor materials. Beginning with a description of the basic electrochemistry of porous semiconductors and the different kinds of porous semiconductor materials that can be fabricated, the book moves on to describe the fabrication processes used in the production of porous semiconductor optical components. Concluding the text, a number of optical components based on porous semiconductor materials are discussed in depth. Porous Semiconductors: Optical Properties and Applications provides a thorough grounding in the design, fabrication and theory behind the optical applications of porous semiconductor materials for graduate and undergraduate students interested in optics, photonics, MEMS, and material science. The book is also a valuable reference for scientists, researchers, and engineers in the field of optics and materials science.




Porous Semiconductors: A Symposium Held in Memory of Vitali Parkhutik and Volker Lehmann


Book Description

This is a special issue of ECS Transactions published by ECS in memory of Volker Lehmann and Vitali Parkhutik, two key scientists in the field of porous semiconductors who recently passed away. Topics in this issue aim at a more detailed understanding of growth mechanisms and the physical and chemical properties of all types of porous semiconductors. The papers address research in the various sub-fields of porous semiconductors such as semiconductor electrochemistry, deposition into pores, matrix materials, optical spectroscopy and transdisciplinary approaches to the topic as well as work relevant to the formation of advanced materials such as, for example, porous silicon, matrix composites and nanoclusters and their applications such as chemical and biological sensors.







Pits and Pores II


Book Description




Nanostructured Semiconductors


Book Description

The book is devoted to nanostructures and nanostructured materials containing both amorphous and crystalline phases with a particular focus on their thermal properties. It is the first time that theoreticians and experimentalists from different domains gathered to treat this subject. It contains two distinct parts; the first combines theory and simulations methods with specific examples, while the second part discusses methods to fabricate nanomaterials with crystalline and amorphous phases and experimental techniques to measure the thermal conductivity of such materials. Physical insights are given in the first part of the book, related with the existing theoretical models and the state of art simulations methods (molecular dynamics, ab-initio simulations, kinetic theory of gases). In the second part, engineering advances in the nanofabrication of crystalline/amorphous heterostructures (heavy ion irradiation, electrochemical etching, aging/recrystallization, ball milling, PVD, laser crystallization and magnetron sputtering) and adequate experimental measurement methods are analyzed (Scanning Thermal Microscopy, Raman, thermal wave methods and x-rays neutrons spectroscopy).




Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Volume Two


Book Description

Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. For example, the pores and surface chemistry of the mater




Porous Silicon: From Formation to Application: Formation and Properties, Volume One


Book Description

Porous silicon is rapidly attracting increasing interest in various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, biosensing, and energy. Porous Silicon: Formation and Properties fills a gap in the literature of the field today, providing a thorough introduction to current knowledge of the formation, processin




Porous Silicon Carbide and Gallium Nitride


Book Description

Porous Silicon Carbide and Gallium Nitride: Epitaxy, Catalysis, and Biotechnology Applications presents the state-of-the-art in knowledge and applications of porous semiconductor materials having a wide band gap. This comprehensive reference begins with an overview of porous wide-band-gap technology, and describes the underlying scientific basis for each application area. Additional chapters cover preparation, characterization, and topography; processing porous SiC; medical applications; magnetic ion behavior, and many more




State-of-the-Art Program on Compound Semiconductors 50 (SOTAPOCS 50) -and- Processes at the Semiconductor Solution Interface 3


Book Description

This issue of ECS Transactions contain the most recent developments in compound semiconductors encompassing advanced devices, materials growth, characterization, processing, device fabrication, reliability, and other related topics, as well as the most recent developments in processes at the semiconductor/solution interface including etching, oxidation, passivation, film growth, electrochemical and photoelectrochemical processes, electroluminescence, photoluminescence, and other related topics.




Electrochemistry of Nanomaterials


Book Description

Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. Electrochemical methods are widely used for the preparation of nanoparticles and the electrochemical properties of such nanomaterials are most relevant for their applications. This comprehensive reference work will appeal to advanced graduate students and researchers in the field specialized in electrochemistry, materials physics and materials science.