Portal through Mathematics: Journey to Advanced Thinking


Book Description

Portal through Mathematics is a collection of puzzles and problems mostly on topics relating to secondary mathematics. The problems and topics are fresh and interesting and frequently surprising. One example: the puzzle that asks how much length must be added to a belt around the Earth's equator to raise it one foot has probably achieved old chestnut status. Ivanov, after explaining the surprising answer to this question, goes a step further and asks, if you grabbed that too long belt at some point and raised it as high as possible, how high would that be? The answer to that is more surprising than the classic puzzle's answer. The book is organized into 29 themes, each a topic from algebra, geometry or calculus and each launched from an opening puzzle or problem. There are excursions into number theory, solid geometry, physics and combinatorics. Always there is an emphasis on surprise and delight. And every theme begins at a level approachable with minimal background requirements. With well over 250 puzzles and problems, there is something here sure to appeal to everyone. Portal through Mathematics will be useful for prospective secondary teachers of mathematics and may be used (as a supplementary resource) in university courses in algebra, geometry, calculus, and discrete mathematics. It can also be used for professional development for teachers looking for inspiration. However, the intended audience is much broader. Every fan of mathematics will find enjoyment in it.




Where's the Math?


Book Description

Use the powerful strategies of play and storytelling to help young children develop their "math brains." This easy-to-use resource includes fun activities, routines, and games inspired by children's books that challenge children to recognize and think more logically about the math all around them.




Spatial Mathematics


Book Description

In terms of statistics, GIS offers many connections. With GIS, data are gathered, displayed, summarized, examined, and interpreted to discover patterns. Spatial Mathematics: Theory and Practice through Mapping uses GIS as a platform to teach mathematical concepts and skills through visualization of numbers. It examines theory and practice from disparate academic disciplines such as geography, mathematics, physics, and general social science. This approach allows students to grapple with biodiversity, crime, natural hazards, climate, energy, water, and other relevant real-world issues of the twenty-first century. Includes QR Codes Linked to Animated Maps, a Mapping Activity Site, or to an Interactive Webpage, Creating an Interactive Resource That Stays Relevant The book integrates competing philosophical views of the world: synthesis and analysis. These two approaches yield different results and employ different tools. This book considers both approaches to looking at real-world issues that have mathematics as a critical, but often unseen, component. This approach shows readers how to use mathematics to consider the broad problem at hand and to explore diverse realms in the worlds of geography and mathematics and in their interface. A truly interdisciplinary text, the book bridges the worlds of mathematics and geography and demonstrates how they are inextricably linked. It takes advantage of the convergence in citizen science, STEM education, and mapping that help readers become critical consumers of data—understanding its content, quality, limitations, and benefits. It provides thorough grounding in the analytical, statistical, and computational skills required for working in any field that uses geospatial technologies—not just surveyors and remote sensing analysts.




Discrete Mathematics


Book Description

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.







Exercises in (Mathematical) Style


Book Description

What does style mean in mathematics? Style is both how one does something and how one communicates what was done. In this book, the author investigates the worlds of the well-known numbers, the binomial coefficients. He follows the example of Raymond Queneau's Exercises in Style.




Innovation and Technology Enhancing Mathematics Education


Book Description

This book addresses key issues of Technology and Innovation(s) in Mathematics Education, drawing on heterogeneous ways of positioning about innovation in mathematical practice with technology. The book offers ideas and meanings of innovation as they emerge from the entanglement of the various researchers with the mathematical practice, the teacher training program, the student learning and engagement, or the research method that they are telling stories about. The multiple theoretical or empirical perspectives capture a rich landscape, in which the presence of digital technology entails the emergence of new practices, techniques, environments and devices, or new ways of making sense of technology in research, teaching and learning.




Equity in Discourse for Mathematics Education


Book Description

This book explores the connection between the ways people speak in mathematics classrooms and their opportunities to learn mathematics. The words spoken, heard, written and read in mathematics classrooms shape students’ sense of what mathematics is and of what people can do with mathematics. The authors employ multiple perspectives to consider the means for transformative action with respect to increasing opportunities for traditionally marginalized students to form mathematical identities that resonate with their cultural, social, linguistic, and political beings.




Visualisation and Epistemological Access to Mathematics Education in Southern Africa


Book Description

This book demonstrates that using visualisation processes in mathematics education can help to enhance teaching and learning and bridge the inequality gap that exists between well-resourced and under-resourced schools in Southern Africa. Drawing on classroom research conducted in the Southern African region, it examines how epistemological access in a context of gross inequality can be constructively addressed by providing research-based solutions and recommendations. The book outlines the visualisation process as an integral but often overlooked process of mathematics teaching and learning. It goes beyond the traditional understanding of visualisation processes such as picture forming and using tools and considers visualisation processes that are semiotic in nature and includes actions such as gestures in combination with language. It adds value to the visualisation in mathematics education research discourse and deliberation in Africa. With a unique focus on Southern Africa and open avenues for further research and collaboration in the region, it will be a highly relevant reading for researchers, academics and post-graduate students of mathematics education, comparative education and social justice education.




Mathematics Everywhere


Book Description

The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" understandable and enjoyable.