Nonlinear Partial Differential Equations


Book Description

This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.




Mathematical Reviews


Book Description




Physics Briefs


Book Description




Mathematical Modeling in Continuum Mechanics


Book Description

Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.




Metasolutions of Parabolic Equations in Population Dynamics


Book Description

Metasolutions of Parabolic Equations in Population Dynamics explores the dynamics of a generalized prototype of semilinear parabolic logistic problem. Highlighting the author's advanced work in the field, it covers the latest developments in the theory of nonlinear parabolic problems. The book reveals how to mathematically determine if a species maintains, dwindles, or increases under certain circumstances. It explains how to predict the time evolution of species inhabiting regions governed by either logistic growth or exponential growth. The book studies the possibility that the species grows according to the Malthus law while it simultaneously inherits a limited growth in other regions. The first part of the book introduces large solutions and metasolutions in the context of population dynamics. In a self-contained way, the second part analyzes a series of very sharp optimal uniqueness results found by the author and his colleagues. The last part reinforces the evidence that metasolutions are also categorical imperatives to describe the dynamics of huge classes of spatially heterogeneous semilinear parabolic problems. Each chapter presents the mathematical formulation of the problem, the most important mathematical results available, and proofs of theorems where relevant.




Nonlinear Wave Equations


Book Description

The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.




Semilinear Schrodinger Equations


Book Description

The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.




Nonlinear Science at the Dawn of the 21st Century


Book Description

Nonlinear science is by now a well established field of research at the interface of many traditional disciplines and draws on the theoretical concepts developed in physics and mathematics. The present volume gathers the contributions of leading scientists to give the state of the art in many areas strongly influenced by nonlinear research, such as superconduction, optics, lattice dynamics, biology and biomolecular dynamics. While this volume is primarily intended for researchers working in the field care, has been taken that it will also be of benefit to graduate students or nonexpert scientist wishing to familiarize themselves with the current status of research.




Chebyshev and Fourier Spectral Methods


Book Description

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.




Equadiff IV


Book Description