Post-Tensioned Concrete: Principles and Practice, Third Edition


Book Description

The book combines history with academic notes for use at the university level, presenting design examples from actual jobs with applications and detailing for the practicing engineer. Chapter 1 tells the history of post-tensioned concrete as only Ken Bondy can tell it. Chapters 2-8 are the notes Dirk Bondy uses to teach Design of Prestressed Concrete Structures at UCLA and Cal Poly-San Luis Obispo. Chapters 9-13 are design examples that address many of the decisions faced by practicing engineers on typical projects. Chapters 13-14 cover the art of detailing and observing the construction of post-tensioned concrete. This knowledge was obtained over many years of working on our own projects and listening and learning from the the pioneers of post-tensioned concrete. Chapter 15 covers the slab on grade industry, which represents more sales of post-tensioning tendons than all other post-tensioning applications combined. Chapter 16 discusses the challenging application of post-tensioning-external post-tensioning.




Post-Tensioned Concrete Floors


Book Description

Post-tensioning is the most versatile form of pre stressing, a technique which enables engineers to make the most effective use of the material properties of concrete, and so to design structural elements which are strong, slender and efficient. Design in post-tensioned concrete is not difficult and, if done properly, can contribute significantly to the economy and the aesthetic qualities of a building. Post-tensioned floors have found widespread use in office buildings and car park structures, and are also frequently employed in warehouses and public buildings. However, in spite of this, most prestressed concrete texts devote comparatively little attention to floors, concentrating instead on beam elements. This book answers the need for a comprehensive treatment of post-tensioned floor design.




Design Fundamentals of Post-Tensioned Concrete Floors


Book Description

A comprehensive guide to the common practice and the latest developments in the field of post-tensioned concrete floor design. Fundamental design concepts, methodologies and construction practices and brings the concepts to the point of practical application. The presented concepts, practical hints and detailed comparison of computer aided design methods provide a solid base to your professional design efforts.




Post-tensioning Manual


Book Description




Prestressed Concrete


Book Description

Post-tensioning and grouting operations can be dangerous if the required care is not taken in planning, in site preparations and in execution. For prestressed concrete a good working environment is also a prerequisite for high quality. Many accidents in this type of work may be attributed to a lack of training, poor supervision, poor planning or over-familiarity with the process. This guide to good practice highlights important safety measures which are particularly applicable to prestressed concrete, dealing with precautions necessary for post-tensioning and grouting operations on site.




Finite Element Analysis of Prestressed Concrete Structures Using Post-Tensioning Steel


Book Description

This book details the theory and applications of finite element (FE) modeling of post-tensioned (PT) concrete structures, and provides the updated MATLAB code (as of 2019). The challenge of modeling PT prestressed concrete structures lies in the treatment of the interface between the concrete and prestressing tendons. Using MATLAB, this study develops an innovative nonlinear FE formulation which incorporates contact techniques and engineering elements to considerably reduce the need of computational power. This FE formulation has the ability to simulate different PT frame systems with fully bonded, fully unbonded or partially bonded tendons, as well as actual sliding behavior and frictional effects in the tendons. It also allows for the accurate simulation of anchor seating loss.




Prestressed Concrete


Book Description

This textbook imparts a firm understanding of the behavior of prestressed concrete and how it relates to design based on the 2014 ACI Building Code. It presents the fundamental behavior of prestressed concrete and then adapts this to the design of structures. The book focuses on prestressed concrete members including slabs, beams, and axially loaded members and provides computational examples to support current design practice along with practical information related to details and construction with prestressed concrete. It illustrates concepts and calculations with Mathcad and EXCEL worksheets. Written with both lucid instructional presentation as well as comprehensive, rigorous detail, the book is ideal for both students in graduate-level courses as well as practicing engineers.




Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary


Book Description

The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.




Prestressed Concrete Bridges


Book Description

This book was written to make the material presented in my book, Stahlbetonbrucken, accessible to a larger number of engineers throughout the world. A work in English, the logical choice for this task, had been contemplated as Stahlbetonbrucken was still in its earliest stages of preparation. The early success of Stahlbetonbrucken provided significant impetus for the writing of Prestressed Concrete Bridges, which began soon after the publication of its predecessor. The present work is more than a mere translation of Stahlbetonbrucken. Errors in Stahlbetonbrucken that were detected after publication have been corrected. New material on the relation between cracking in concrete and corrosion of reinforce ment, prestressing with unbonded tendons, skew-girder bridges, and cable-stayed bridges has been added. Most importantly, however, the presentation of the material has been extensively reworked to improve clarity and consistency. Prestressed Concrete Bridges can thus be regarded as a thoroughly new and improved edition of its predecessor.