Post-translational Modification of Protein Biopharmaceuticals


Book Description

From the leading author in the field, known around the world for his work and his authoritative publications, the contents of this book have been selected so as to reflect their relative importance for biopharmaceuticals. As a result, around half of the book is devoted to protein glycosylation, while the remainder is made up of other modifications, such as carboxylation, hydroxylation, sulfation, amidation and proteolytic processing. A final section addresses the latest trend of engineering the modification pattern to improve a given biopharmceutical, presenting several recent case studies of successful posttranslational engineering. This first authoritative overview of the topic is an indispensable guide for drug developers and drug manufacturers with an interest in protein pharmaceuticals.




Protein Modificomics


Book Description

Protein Modificomics: From Modifications to Clinical Perspectives comprehensively deals with all of the most recent aspects of post-translational modification (PTM) of proteins, including discussions on diseases involving PTMs, such as Alzheimer's, Huntington's, X-linked spinal muscular atrophy-2, aneurysmal bone cyst, angelman syndrome and OFC10. The book also discusses the role PTMs play in plant physiology and the production of medicinally important primary and secondary metabolites. The understanding of PTMs in plants helps us enhance the production of these metabolites without greatly altering the genome, providing robust eukaryotic systems for the production and isolation of desired products without considerable downstream and isolation processes.




Biosimilars of Monoclonal Antibodies


Book Description

Addressing a significant need by describing the science and process involved to develop biosimilars of monoclonal antibody (mAb) drugs, this book covers all aspects of biosimilar development: preclinical, clinical, regulatory, manufacturing. • Guides readers through the complex landscape involved with developing biosimilar versions of monoclonal antibody (mAb) drugs • Features flow charts, tables, and figures that clearly illustrate processes and makes the book comprehensible and accessible • Includes a review of FDA-approved mAb drugs as a quick reference to facts and useful information • Examines new technologies and strategies for improving biosimilar mAbs




Post-translational Modifications of Proteins


Book Description

This is a fully up-dated and expanded practical guide to protein structure-function relationships. This important area of research is brought up-to-date by the leading scientists in the field. The compilation of detailed protocols focuses on protein function, proteome research and characterization of pharmaceutical proteins, while following the successful format of the Methods in Molecular BiologyTM series. Comprehensive and cutting edge, the book serves as practical guide for researchers working in the field of protein structure-function relationships and the rapidly growing field of proteomics, as well as scientists in the pharmaceutical industries.




Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts


Book Description

Written for industrial and academic researchers and development scientists in the life sciences industry, Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts is a guide to the tools, approaches, and useful developments in bioprocessing. This important guide: • Summarizes state-of-the-art bioprocessing methods and reviews applications in life science industries • Includes illustrative case studies that review six milestone bio-products • Discuses a wide selection of host strain types and disruptive bioprocess technologies




Post-Translational Modifications in Health and Disease


Book Description

Post-translational modifications serve many different purposes in several cellular processes such as gene expression, protein folding and transport to appropriate cell compartment, protein-lipid and protein-protein interactions, enzyme regulation, signal transduction, cell proliferation and differentiation, protein stability, recycling and degradation. Although several-hundred different modifications are known, the significance of many of them remains unknown. The enormous versatility of the modifications which frequently alter the physico-chemical properties of the respective proteins represents an extraordinary challenge in understanding their physiological role. Since essential cellular functions are regulated by protein modifications, an improvement of current understanding of their meaning might allow new avenues to prevent and/or alleviate human and animal diseases.




Protein Conformation


Book Description

How the amino acid sequence of a protein determines its three-dimensional structure is a major problem in biology and chemistry. Leading experts in the fields of NMR spectroscopy, X-ray crystallography, protein engineering and molecular modeling offer provocative insights into current views on the protein folding problem and various aspects for future progress.




Co- and Post-Translational Modifications of Therapeutic Antibodies and Proteins


Book Description

A Comprehensive Guide to Crucial Attributes of Therapeutic Proteins in Biological Pharmaceuticals With this book, Dr. Raju offers a valuable resource for professionals involved in research and development of biopharmaceutical and biosimilar drugs. This is a highly relevant work, as medical practitioners have increasingly turned to biopharmaceutical medicines in their search for safe and reliable treatments for complex diseases, while pharmaceutical researchers seek to expand the availability of biopharmaceuticals and create more affordable biosimilar alternatives. Readers receive a thorough overview of the major co-translational modifications (CTMs) and post-translational modifications (PTMs) of therapeutic proteins relevant to the development of biotherapeutics. The majority of chapters detail individual CTMs and PTMs that may affect the physicochemical, biochemical, biological, pharmacokinetic, immunological, toxicological etc. properties of proteins. In addition, readers are guided on the methodology necessary to analyze and characterize these modifications. Thus, readers gain not only an understanding of CTMs/PTMs, but also the ability to design and assess their own structure-function studies for experimental molecules. Specific features and topics include: Discussion of the research behind and expansion of biopharmaceuticals Twenty chapters detailing relevant CTMs and PTMs of proteins, such as glycosylation, oxidation, phosphorylation, methylation, proteolysis, etc. Each chapter offers an introduction and guide to the mechanisms and biological significance of an individual CTM or PTM, including practical guidance for experiment design and analysis An appendix of biologic pharmaceuticals currently on the market, along with an assessment of their PTMs and overall safety and efficacy This volume will prove a key reference on the shelves of industry and academic researchers involved in the study and development of biochemistry, molecular biology, biopharmaceuticals and proteins in medicine, particularly as biopharmaceuticals and biosimilars become ever more prominent tools in the field of healthcare.




Analysis of Protein Post-Translational Modifications by Mass Spectrometry


Book Description

Covers all major modifications, including phosphorylation, glycosylation, acetylation, ubiquitination, sulfonation and and glycation Discussion of the chemistry behind each modification, along with key methods and references Contributions from some of the leading researchers in the field A valuable reference source for all laboratories undertaking proteomics, mass spectrometry and post-translational modification research




Basic and Applied Aspects of Biotechnology


Book Description

This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.