Postbuckling Behavior Of Plates And Shells


Book Description

As an expert in structure and stress analysis, the author has written extensively on functionally graded materials (FGMs), nonlinear vibration and dynamic response of functionally graded material plates in thermal environments, buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments. This book provides a comprehensive overview of the author's works which include significant contributions to the postbuckling behavior of plates and shells under different loading and environmental conditions.This book comprises eight chapters. Each chapter contains adequate introductory material so that an engineering graduate who is familiar with basic understanding of plates and shells will be able to follow it.




Buckling and Postbuckling of Beams, Plates, and Shells


Book Description

This book contains eight chapters treating the stability of all major areas of the flexural theory. It covers the stability of structures under mechanical and thermal loads and all areas of structural, loading and material types. The structural element may be assumed to be made of a homogeneous/isotropic material, or of a functionally graded material. Structures may experience the bifurcation phenomenon, or they may follow the postbuckling path. This volume explains all these aspects in detail. The book is self-contained and the necessary mathematical concepts and numerical methods are presented in such a way that the reader may easily follow the topics based on these basic tools. It is intended for people working or interested in areas of structural stability under mechanical and/or thermal loads. Some basic knowledge in classical mechanics and theory of elasticity is required.




Buckling and Post Buckling Structures


Book Description

This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.




Buckling of Bars, Plates, and Shells


Book Description







Thin Plates and Shells


Book Description

Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli







A Translation of Flexible Plates and Shells


Book Description

This book is concerned with the general theory of finite deflections of thin elastic plates and shells. The nature of the governing equations is such that deflections are essentially limited to several times the plate or shell thickness, in the spirit of the usual von Karman approximation. Finite deflections of laterally loaded rectangular plates with various edge conditions are treated in detail. The postbuckling behavior of ordinary and rib-stiffened rectangular plates subject to in-plane loads is also examined. The finite deflections of circular plates subject to axisymmetric lateral or in-plane loads are examined. Finite deflections of shallow shells in the form of curved panels subject to lateral load are studied on the basis of an approximate shell theory. The postbuckling behavior of cylindrical panels subject to various in-plane normal and shear forces is treated in detail. The finite-deflection buckling of circular cylindrical shells subject to axial compression, lateral loads, or torsion is examined with a consideration of the effects of initial geometric imperfections. Lastly, the finite-deformation buckling of spherical shells and spherical caps is treated by an approximate shell theory. The approximate theories are correlated with available experimental evidence wherever possible.







Thermal Stress Analysis of Composite Beams, Plates and Shells


Book Description

Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings