Potential Scattering in Atomic Physics


Book Description

This monograph was written while the author was a visitor at the Center for Theoretical Studies at the University of Miami, Coral Gables, Florida. The author wishes to thank Professor Behram Kursunoglu for the warm hospitality extended to him at the Center and to acknowledge the many interesting and fruitful discussions which he had with other visitors and with members of staff at the Center. Philip G. Burke v Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Scattering by a Short-Range Potential. . . . . . . . . . . . . . . 5 3. Scattering by a Coulomb Potential. . . . . . . . . . . . . . . . . . 11 4. Scattering by a Spin-Orbit Potential . . . . . . . . . . . . . . " 17 5. Scattering by One-Electron Atoms. . . . . . . . . . . . . . . . . . 23 6. Low-Energy Effective-Range Theory. . . . . . . . . . . . . . . . 39 7. Bound States and Resonances. . . . . . . . . . . . . . . . . . . . . . 55 8. Variational Methods and Bound Principles. . . . . . . . . . 75 9. Integral Equation Methods and the Born Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10. Semiclassical and Eikonal Methods . . . . . . . . . . . . . . . . . 117 Appendix. The Coupling of Angular Momenta . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 vii 1 Introduction In this monograph we study the scattering of a particle by a potential field with particular reference to elastic electron scat tering by a neutral atom or by an ion. This subject is clearly of interest in its own right as a branch of quantum mechanical scattering theory. However, it also serves as an introduction to many of the basic theoretical concepts which are used in inelastic electron scattering and ionization. Consequently this mono graph can be viewed as an introduction to texts where these subjects are treated.




Computational Atomic Physics


Book Description

Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.




Scattering Theory of Molecules, Atoms and Nuclei


Book Description

The aim of the book is to give a coherent and comprehensive account of quantum scattering theory with applications to atomic, molecular and nuclear systems. The motivation for this is to supply the necessary theoretical tools to calculate scattering observables of these many-body systems. Concepts which are seemingly different for atomic/molecular scattering from those of nuclear systems, are shown to be the same once physical units such as energy and length are diligently clarified. Many-body resonances excited in nuclear systems are the same as those in atomic systems and come under the name of Feshbach resonances. We also lean heavily on semi-classical methods to explain the physics of quantum scattering OCo especially the interference seen in the angle dependence of the cross section. Having in mind a wide readership, the book includes sections on scattering in two dimensions which is of use in surface physics. Several problems are also included at the end of each of the chapters.




Scattering Theory


Book Description

This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.




Theory of Electron—Atom Collisions


Book Description

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.







University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Theory of Electron-Atom Collisions: Part One: Potential Scattering


Book Description

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.




Theoretical Atomic Physics


Book Description

This new edition presents the recent developments in atomic physics. Beginning with a review of quantum mechanics, the book covers important areas of theoretical atomic physics, including semiclassical theory, periodic orbit theory, scaling properties for atoms in external fields, threshold behavior of ionization cross sections, and classical quantum dynamics of two-electron atoms.




Classical And Quantum Dissipative Systems (Second Edition)


Book Description

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.