Powder Metallurgy of Iron and Steel


Book Description

A comprehensive guide to current practices Powder metallurgy processes increasingly dominate the production of iron and steel components for a variety of machines, appliances, automobiles, and tools. These processes yield high-quality precision components, recycle scrap metals into useful powders, and consume less energy than traditional manufacturing methods. Despite the tremendous growth in this area, however, until now there has been no guide on practical issues in the field. Powder Metallurgy of Iron and Steel fills the need for a fundamental, nonmathematical treatment of this technology. Focusing on the most useful applications and the advantages of different production techniques, this systematic, self-contained volume provides serious help in tackling production problems on the factory floor. It covers the gamut of practical topics, from injection molding and compaction processes to sintering, full-density processes, heat treatments, finishing operations, and the mechanical properties of many products, including die-compacted steels. Written by a leading authority and designer of educational programs for the industry, Powder Metallurgy of Iron and Steel: Emphasizes current practices and real engineering materials in everyday manufacturing processes Keeps the mathematics simple, boxing the calculations outside the main body of text Includes research articles and trade information from a variety of sources Features numerous pictures and flow diagrams Includes an appendix with an extensive list of definitions This important tutorial for an expanding work force is accessible to scientists and engineers alike, as well as technicians, production supervisors, designers, consultants, and marketing personnel. It is also an excellent textbook for undergraduate and industrial courses.




Ferrous Powder Metallurgy


Book Description

Because of the position of ferrous powder metallurgy, the author deals with the theoretical fundamentals and technical and technological aspects of the current state of knowledge in ferrous powder metallurgy so that special attention may be given to all factors influencing parts and materials with the required properties, form and dimensions, stressing their higher economic efficiency. The book also shows the extensive possibilities for further development of ferrous powder metallurgy and should therefore contribute to increasing the level of general and detailed knowledge of experts working in this area and should help in transition from fabrication of parts by conventional methods with all typical economic and ecological shortcomings to fabrication by powder metallurgy methods.




Encyclopedia of Iron, Steel, and Their Alloys (Online Version)


Book Description

The first of many important works featured in CRC Press’ Metals and Alloys Encyclopedia Collection, the Encyclopedia of Iron, Steel, and Their Alloys covers all the fundamental, theoretical, and application-related aspects of the metallurgical science, engineering, and technology of iron, steel, and their alloys. This Five-Volume Set addresses topics such as extractive metallurgy, powder metallurgy and processing, physical metallurgy, production engineering, corrosion engineering, thermal processing, metalworking, welding, iron- and steelmaking, heat treating, rolling, casting, hot and cold forming, surface finishing and coating, crystallography, metallography, computational metallurgy, metal-matrix composites, intermetallics, nano- and micro-structured metals and alloys, nano- and micro-alloying effects, special steels, and mining. A valuable reference for materials scientists and engineers, chemists, manufacturers, miners, researchers, and students, this must-have encyclopedia: Provides extensive coverage of properties and recommended practices Includes a wealth of helpful charts, nomograms, and figures Contains cross referencing for quick and easy search Each entry is written by a subject-matter expert and reviewed by an international panel of renowned researchers from academia, government, and industry. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Advances in Powder Metallurgy


Book Description

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques




Iron and Steel


Book Description

This book is intended both as a resource for engineers and as an introduction to the layman about our most important metal system. After an introduction that deals with the history and refining of iron and steel, the rest of the book examines their physical properties and metallurgy. To elaborate on the importance of iron and steel, we can refer to the fact that modern civilization as we know it would not be possible without it. Steel is essential in the machinery necessary for manufacturing that meets our needs. Even the words themselves have come to suggest strength. Phrases such as 'iron willed', 'iron fisted', 'iron clad', 'iron curtain' and 'pumping iron' imply strength. A 'steely glance' is a stern look. 'A heart of steel' refers to a very hard demeanor. The Russian dictator, Stalin (which means steel in Russian), chose the name to invoke fear in those under him.




Powder Metallurgy Stainless Steels


Book Description




Powder Metallurgy Technology


Book Description

Annotation Contents1 INTRODUCTION; 2 METAL POWDER PRODUCTION; 3 METAL POWDER CHARACTERISTICS; 4 METAL POWDER TRE-AMENT; 5 METAL POWDER COMPACT-ION; 6 SINTERING; 7 HOT CONSOLIDATION; 8 SECONDARY TREATMENT; 9 POWDER INJECTION MOULDING; 10 QUALITY CONTROL OF POWDER METALLURGY MATERIALS.




Iron Powder Metallurgy


Book Description




Advanced Surface Coating Techniques for Modern Industrial Applications


Book Description

In engineering, there are often situations in which the material of the main component is unable to sustain long life or protect itself from adverse operating environments. Moreover, in some cases, different material properties such as anti-friction and wear, anti-corrosive, thermal resistive, super hydrophobic, etc. are required as per the operating conditions. If those bulk components are made of such materials and possess those properties, the cost will be very high. In such cases, a practical solution is surface coating, which serves as a protective barrier to the bulk material from the adverse environment. In the last decade, with enormous effort, researchers and scientists have developed suitable materials to overcome those unfavorable operating conditions, and they have used advanced deposition techniques to enhance the adhesion and surface texturing of the coatings. Advanced Surface Coating Techniques for Modern Industrial Applications is a highly sought reference source that compiles the recent research trends in these new and emerging surface coating materials, deposition techniques, properties of coated materials, and their applications in various engineering and industrial fields. The book particularly focuses on 1) coating materials including anti-corrosive materials and nanomaterials, 2) coating methods including thermal spray and electroless disposition, and 3) applications such as surface engineering and thin film application. The book is ideal for engineers, scientists, researchers, academicians, and students working in fields like material science, mechanical engineering, tribology, chemical and corrosion science, bio-medical engineering, biomaterials, and aerospace engineering.




Handbook of Metal Injection Molding


Book Description

Metal injection molding combines the most useful characteristics of powder metallurgy and plastic injection molding to facilitate the production of small, complex-shaped metal components with outstanding mechanical properties. Handbook of Metal Injection Molding, Second Edition provides an authoritative guide to this important technology and its applications. Building upon the success of the first edition, this new edition includes the latest developments in the field and expands upon specific processing technologies. Part one discusses the fundamentals of the metal injection molding process with chapters on topics such as component design, important powder characteristics, compound manufacture, tooling design, molding optimization, debinding, and sintering. Part two provides a detailed review of quality issues, including feedstock characterisation, modeling and simulation, methods to qualify a MIM process, common defects and carbon content control. Special metal injection molding processes are the focus of part three, which provides comprehensive coverage of micro components, two material/two color structures, and porous metal techniques, as well as automation of the MIM process and metal injection molding of large components. Finally, part four explores metal injection molding of particular materials, and has been expanded to include super alloys, carbon steels, precious metals, and aluminum. With its distinguished editor and expert team of international contributors, the Handbook of Metal Injection Molding is an essential guide for all those involved in the high-volume manufacture of small precision parts, across a wide range of high-tech industries such as microelectronics, biomedical and aerospace engineering. Provides an authoritative guide to metal injection molding and its applications Discusses the fundamentals of the metal injection molding processes and covers topics such as component design, important powder characteristics, compound manufacture, tooling design, molding optimization, debinding, and sintering Comprehensively examines quality issues such as feedstock characterization, modeling and simulation, common defects and carbon content control